skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: GNL3 is an evolutionarily conserved stem cell gene influencing cell proliferation, animal growth and regeneration in the hydrozoan Hydractinia
Nucleostemin ( NS ) is a vertebrate gene preferentially expressed in stem and cancer cells, which acts to regulate cell cycle progression, genome stability and ribosome biogenesis. NS and its paralogous gene, GNL3-like ( GNL3L ), arose in the vertebrate clade after a duplication event from their orthologous gene, G protein Nucleolar 3 ( GNL3 ). Research on invertebrate GNL3 , however, has been limited. To gain a greater understanding of the evolution and functions of the GNL3 gene, we have performed studies in the hydrozoan cnidarian Hydractinia symbiolongicarpus , a colonial hydroid that continuously generates pluripotent stem cells throughout its life cycle and presents impressive regenerative abilities. We show that Hydractinia GNL3 is expressed in stem and germline cells. The knockdown of GNL3 reduces the number of mitotic and S-phase cells in Hydractinia larvae of different ages. Genome editing of Hydractinia GNL3 via CRISPR/Cas9 resulted in colonies with reduced growth rates, polyps with impaired regeneration capabilities, gonadal morphological defects, and low sperm motility. Collectively, our study shows that GNL3 is an evolutionarily conserved stem cell and germline gene involved in cell proliferation, animal growth, regeneration and sexual reproduction in Hydractinia , and sheds new light into the evolution of GNL3 and of stem cell systems.  more » « less
Award ID(s):
1923259
PAR ID:
10440480
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Open Biology
Volume:
12
Issue:
9
ISSN:
2046-2441
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Adult pluripotent stem cells are found in diverse animals, including cnidarians, acoels, and planarians, and confer remarkable abilities such as whole-body regeneration. The mechanisms by which these pluripotent stem cells orchestrate the replacement of all lost cell types, however, remains poorly understood. Underlying heterogeneity within the stem cell populations of these animals is often obscured when focusing on certain tissue types or life history stages, which tend to have indistinguishable spatial expression patterns of stem cell marker genes. Here, we focus on the adult pluripotent stem cells (i-cells) ofHydractinia symbiolongicarpus, a colonial marine cnidarian with distinct polyp types and stolonal tissue. Recently, a single-cell expression atlas was generated forH. symbiolongicarpuswhich revealed two distinct clusters with i-cell signatures, potentially representing heterogeneity within this species’ stem cell population. Considering this finding, we investigated eight new putative stem cell marker genes from the atlas including five expressed in both i-cell clusters (Pcna,Nop58,Mcm4,Ubr7, andUhrf1) and three expressed in one cluster or the other (Pter, FoxQ2-like,andZcwpw1). We characterized their expression patterns in various contexts–feeding and sexual polyps, juvenile feeding polyps, stolon, and during feeding polyp head regeneration–revealing context-dependent gene expression patterns and a transcriptionally dynamic i-cell population. We uncover previously unknown differences within the i-cell population ofHydractiniaand demonstrate that its colonial nature serves as an excellent system for investigating and visualizing heterogeneity in pluripotent stem cells. 
    more » « less
  2. Hydractiniais a colonial marine hydroid that shows remarkable biological properties, including the capacity to regenerate its entire body throughout its lifetime, a process made possible by its adult migratory stem cells, known as i-cells. Here, we provide an in-depth characterization of the genomic structure and gene content of twoHydractiniaspecies,Hydractinia symbiolongicarpusandHydractinia echinata, placing them in a comparative evolutionary framework with other cnidarian genomes. We also generated and annotated a single-cell transcriptomic atlas for adult maleH. symbiolongicarpusand identified cell-type markers for all major cell types, including key i-cell markers. Orthology analyses based on the markers revealed thatHydractinia’s i-cells are highly enriched in genes that are widely shared amongst animals, a striking finding given thatHydractiniahas a higher proportion of phylum-specific genes than any of the other 41 animals in our orthology analysis. These results indicate thatHydractinia’s stem cells and early progenitor cells may use a toolkit shared with all animals, making it a promising model organism for future exploration of stem cell biology and regenerative medicine. The genomic and transcriptomic resources forHydractiniapresented here will enable further studies of their regenerative capacity, colonial morphology, and ability to distinguish self from nonself. 
    more » « less
  3. null (Ed.)
    Plants maintain populations of pluripotent stem cells in shoot apical meristems (SAMs), which continuously produce new aboveground organs. We used single-cell RNA sequencing (scRNA-seq) to achieve an unbiased characterization of the transcriptional landscape of the maize shoot stem-cell niche and its differentiating cellular descendants. Stem cells housed in the SAM tip are engaged in genome integrity maintenance and exhibit a low rate of cell division, consistent with their contributions to germline and somatic cell fates. Surprisingly, we find no evidence for a canonical stem-cell organizing center subtending these cells. In addition, trajectory inference was used to trace the gene expression changes that accompany cell differentiation, revealing that ectopic expression of KNOTTED1 ( KN1 ) accelerates cell differentiation and promotes development of the sheathing maize leaf base. These single-cell transcriptomic analyses of the shoot apex yield insight into the processes of stem-cell function and cell-fate acquisition in the maize seedling and provide a valuable scaffold on which to better dissect the genetic control of plant shoot morphogenesis at the cellular level. 
    more » « less
  4. Hughes, T (Ed.)
    Abstract The germline-soma divide is a fundamental distinction in developmental biology, and different genes are expressed in germline and somatic cells throughout metazoan life cycles. Ciliates, a group of microbial eukaryotes, exhibit germline-somatic nuclear dimorphism within a single cell with two different genomes. The ciliate Oxytricha trifallax undergoes massive RNA-guided DNA elimination and genome rearrangement to produce a new somatic macronucleus (MAC) from a copy of the germline micronucleus (MIC). This process eliminates noncoding DNA sequences that interrupt genes and also deletes hundreds of germline-limited open reading frames (ORFs) that are transcribed during genome rearrangement. Here, we update the set of transcribed germline-limited ORFs (TGLOs) in O. trifallax. We show that TGLOs tend to be expressed during nuclear development and then are absent from the somatic MAC. We also demonstrate that exposure to synthetic RNA can reprogram TGLO retention in the somatic MAC and that TGLO retention leads to transcription outside the normal developmental program. These data suggest that TGLOs represent a group of developmentally regulated protein-coding sequences whose gene expression is terminated by DNA elimination. 
    more » « less
  5. Hydractinia is a colonial marine hydroid that exhibits remarkable biological properties, including the capacity to regenerate its entire body throughout its lifetime, a process made possible by its adult migratory stem cells, known as i-cells. Here, we provide an in-depth characterization of the genomic structure and gene content of two Hydractinia species, H. symbiolongicarpus and H. echinata, placing them in a comparative evolutionary framework with other cnidarian genomes. We also generated and annotated a single-cell transcriptomic atlas for adult male H. symbiolongicarpus and identified cell type markers for all major cell types, including key i-cell markers. Orthology analyses based on the markers revealed that Hydractinia's i-cells are highly enriched in genes that are widely shared amongst animals, a striking finding given that Hydractinia has a higher proportion of phylum-specific genes than any of the other 41 animals in our orthology analysis. These results indicate that Hydractinia's stem cells and early progenitor cells may use a toolkit shared with all animals, making it a promising model organism for future exploration of stem cell biology and regenerative medicine. The genomic and transcriptomic resources for Hydractinia presented here will enable further studies of their regenerative capacity, colonial morphology, and ability to distinguish self from non-self. 
    more » « less