One of the critical components of large-scale manufacturing of bioengineered tissues is the sensing of information for quality control and critical feedback of tissue growth. Modern sensors that measure mechanical qualities of tissues, however, are invasive and destructive. The goal of this project is to develop noninvasive methodologies to measure the mechanical properties of tissue engineering products. Our approach is to utilize acoustic waves to induce nanoscale level vibrations in the engineered tissues in which corresponding displacements are measured in full-field with quantitative optical techniques. A digital holographic system images the tissue’s vibration at significant modes and provides the displacement patterns of the tissue. These data are used to train a supervised learning classifier with a goal of using the comparisons between the experimental vibrational modes and the ones obtained by finite element simulation to estimate the physical properties of the tissue. This methodology has the promise of mechanical properties that would allow technicians to noninvasively determine when samples are ready to be packaged, if their growth deviates from expected time frames, or if there are defects in the tissue. It is expected that this approach will streamline several components of the quality control and production process.
more »
« less
Characterization of Bioengineered Tissues by Digital Holographic Vibrometry and 3D Shape Deep Learning
Tissue engineering is an active field and one of its aims is to produce tissues to repair the human body. The Advanced Regenerative Medicine Initiative (ARMI) currently seeks to help increase the manufacturability of tissue engineering products (TEMPs). One of the critical components of large-scale manufacturing is the sensing of information for quality control and critical feedback of tissue growth patterns. Modern sensors that provide information about physical qualities of tissues, however, are invasive or destructive. The goal of this project is to develop noninvasive methodologies to measure the mechanical properties of TEMPs. Our approach is to utilize acoustic waves to induce nano-scale level vibrations in the enginineered tissues in which corresponding displacements are measured in full-field with quantitative optical techniques. In our work, a digital holographic system images the tissue’s vibration at significant modes and provides the displacement patterns of the tissue at various points along the sinusoidal excitation curve. These data are applied to a neural network to compare the experimental vibrational modes to the ones obtained by FEA simulation to estimate the physical properties of the tissue. This methodology has the promise of yielding critical control parameters that would allow technicians to noninvasively and consistently determine when samples are ready to be packaged or if their growth deviates from expected time frames or if there are defects in the tissue. It is expected that this approach will streamline several components of the quality control and production process.
more »
« less
- Award ID(s):
- 1761432
- PAR ID:
- 10440489
- Editor(s):
- Lin, MT.; Furlong, C.; Hwang, CH.; Naraghi, M.; DelRio, F.
- Date Published:
- Journal Name:
- 2022 Conference Proceedings of the Society for Experimental Mechanics Series
- Volume:
- 4
- Page Range / eLocation ID:
- 57-62
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Tissue engineering is an interdisciplinary field combining biology, chemistry, and engineering to create implantable structures that support healing and regeneration. Autografts, tissues taken from a patient’s own body, are commonly used due to their high compatibility and minimal disease transmission risk. However, autografts are limited by the small amount of tissue that can be harvested. Allografts, or transplants from one person to another, provide a more natural alternative to synthetic or metal implants, yet their use is constrained by limited donor availability, high rejection rates, and significant operating costs. Although synthetic polymer, ceramic, and metallic implants have gained popularity due to their affordability and durability, they often lead to chronic pain, restricted movement, and eventual reimplantation because of issues like surface wear and reduced lubrication. Advances in artificial intelligence (AI), machine learning (ML), and 3D printing are opening new possibilities in tissue engineering. Researchers are now exploring natural polymers as an alternative to synthetic materials by focusing on the structural complexities and sustainability of native tissues. For example, type I collagen (Col), the most abundant protein in human connective tissues, shows promise as a replacement for titanium in bone tissue engineering due to its excellent mechanical properties, biocompatibility, and ability to support bone growth (osteogenesis). When combined with hydroxyapatite (HAp), Col-HAp composites can closely mimic the natural organic-inorganic structure of bone, providing both the chemical and physical properties needed to promote tissue healing and regeneration. However, the extraction and processing of collagen pose challenges, as they can degrade its natural properties and complicate the 3D printing of implants. This perspective examines the processing, characterization, and manufacturability of Col, its composites, and other robust biomaterials for bone tissue engineering, aiming to replicate the mechanical behavior of human limbs under both static and dynamic conditions. It also explores how AI and ML can enhance the precision and reproducibility of Col composite printing and enable generative scaffold design to foster vascularization, cell viability, and tissue growth. Finally, this work underscores the advancements in novel and customized 3D bioprinting systems designed to address patient-specific requirements, promote higher cell proliferation, and fabricate complex scaffold structures with improved structural properties.more » « less
-
Abstract Embryonic morphogenesis is a biological process which depicts shape forming of tissues and organs during development. Unveiling the roles of mechanical forces generated, transmitted, and regulated in cells and tissues through these processes is key to understanding the biophysical mechanisms governing morphogenesis. To this end, it is imperative to measure, simulate, and predict the regulation and control of these mechanical forces during morphogenesis. This article aims to provide a comprehensive review of the recent advances on mechanical properties of cells and tissues, generation of mechanical forces in cells and tissues, the transmission processes of these generated forces during cells and tissues, the tools and methods used to measure and predict these mechanical forces in vivo, in vitro, or in silico, and to better understand the corresponding regulation and control of generated forces. Understanding the biomechanics and mechanobiology of morphogenesis will not only shed light on the fundamental physical mechanisms underlying these concerted biological processes during normal development, but also uncover new information that will benefit biomedical research in preventing and treating congenital defects or tissue engineering and regeneration.more » « less
-
Abstract The ability to sense and respond to physical forces is critical for the proper function of cells, tissues, and organisms across the evolutionary tree. Plants sense gravity, osmotic conditions, pathogen invasion, wind, and the presence of barriers in the soil, and dynamically integrate internal and external stimuli during every stage of growth and development. While the field of plant mechanobiology is growing, much is still poorly understood—including the interplay between mechanical and biochemical information at the single-cell level. In this review, we provide an overview of the mechanical properties of three main components of the plant cell and the mechanoperceptive pathways that link them, with an emphasis on areas of complexity and interaction. We discuss the concept of mechanical homeostasis, or “mechanostasis,” and examine the ways in which cellular structures and pathways serve to maintain it. We argue that viewing mechanics and mechanotransduction as emergent properties of the plant cell can be a useful conceptual framework for synthesizing current knowledge and driving future research.more » « less
-
The extracellular matrix (ECM) represents a complex and dynamic framework for cells, characterized by tissue-specific biophysical, mechanical, and biochemical properties. ECM components in vascular tissues provide structural support to vascular cells and modulate their function through interaction with specific cell-surface receptors. ECM–cell interactions, together with neurotransmitters, cytokines, hormones and mechanical forces imposed by blood flow, modulate the structural organization of the vascular wall. Changes in the ECM microenvironment, as in post-injury degradation or remodeling, lead to both altered tissue function and exacerbation of vascular pathologies. Regeneration and repair of the ECM are thus critical toward reinstating vascular homeostasis. The self-renewal and transdifferentiating potential of stem cells (SCs) into other cell lineages represents a potentially useful approach in regenerative medicine, and SC-based approaches hold great promise in the development of novel therapeutics toward ECM repair. Certain adult SCs, including mesenchymal stem cells (MSCs), possess a broader plasticity and differentiation potential, and thus represent a viable option for SC-based therapeutics. However, there are significant challenges to SC therapies including, but not limited to cell processing and scaleup, quality control, phenotypic integrity in a disease milieu in vivo , and inefficient delivery to the site of tissue injury. SC-derived or -inspired strategies as a putative surrogate for conventional cell therapy are thus gaining momentum. In this article, we review current knowledge on the patho-mechanistic roles of ECM components in common vascular disorders and the prospects of developing adult SC based/inspired therapies to modulate the vascular tissue environment and reinstate vessel homeostasis in these disorders.more » « less
An official website of the United States government

