We combine velocity map imaging (VMI) with temperature-programmed desorption (TPD) experiments to record the angular-resolved velocity distributions of recombinatively-desorbing oxygen from Rh(111). We assign the velocity distributions to desorption from specific surface and sub-surface states by matching the recorded distributions to the desorption temperature. These results provide insight into the recombinative desorption mechanisms and the availability of oxygen for surface-catalyzed reactions.
more »
« less
Hyperthermal velocity distributions of recombinatively-desorbing oxygen from Ag(111)
This study presents velocity-resolved desorption experiments of recombinatively-desorbing oxygen from Ag (111). We combine molecular beam techniques, ion imaging, and temperature-programmed desorption to obtain translational energy distributions of desorbing O 2 . Molecular beams of NO 2 are used to prepare a p (4 × 4)-O adlayer on the silver crystal. The translational energy distributions of O 2 are shifted towards hyperthermal energies indicating desorption from an intermediate activated molecular chemisorption state.
more »
« less
- Award ID(s):
- 2155068
- PAR ID:
- 10440550
- Date Published:
- Journal Name:
- Frontiers in Chemistry
- Volume:
- 11
- ISSN:
- 2296-2646
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The vibrational predissociation (VP) dynamics of the phenol–water (PhOH–H 2 O) dimer were studied by detecting H 2 O fragments and using velocity map imaging (VMI) to infer the internal energy distributions of PhOH cofragments, pair-correlated with selected rotational levels of the H 2 O fragments. Following infrared (IR) laser excitation of the hydrogen-bonded OH stretch fundamental of PhOH (Pathway 1) or the asymmetric OH stretch localized on H 2 O (Pathway 2), dissociation to H 2 O + PhOH was observed. H 2 O fragments were monitored state-selectively by using 2+1 Resonance-Enhanced Multiphoton Ionization (REMPI) combined with time-of-flight mass spectrometry (TOF-MS). VMI of H 2 O in selected rotational levels was used to derive center-of-mass (c.m.) translational energy ( E T ) distributions. The pair-correlated internal energy distributions of the PhOH cofragments derived via Pathway 1 were well described by a statistical prior distribution. On the other hand, the corresponding distributions obtained via Pathway 2 show a propensity to populate higher-energy rovibrational levels of PhOH than expected from a statistical distribution and agree better with an energy-gap model. The REMPI spectra of the H 2 O fragments from both pathways could be fit by Boltzmann plots truncated at the maximum allowed energy, with a higher temperature for Pathway 2 than that for Pathway 1. We conclude that the VP dynamics depends on the OH stretch level initially excited.more » « less
-
Abstract Gas-phase abundance ratios between C2H4O2isomers methyl formate (MF), glycolaldehyde (GA), and acetic acid (AA) are typically on the order of 100:10:1 in star-forming regions. However, an unexplained divergence from this neat relationship was recently observed toward a collection of sources in the massive protocluster NGC 6334I; some sources exhibited extreme MF:GA ratios, producing a bimodal behavior between different sources, while the MF:AA ratio remained stable. Here, we use a three-phase gas-grain hot-core chemical model to study the effects of a large parameter space on the simulated C2H4O2abundances. A combination of high gas densities and long timescales during ice-mantle desorption (∼125–160 K) appears to be the physical cause of the high MF:GA ratios. The main chemical mechanism for GA destruction occurring under these conditions is the rapid adsorption and reaction of atomic H with GA on the ice surfaces before it has time to desorb. The different binding energies of MF and GA on water ice are crucial to the selectivity of the surface destruction mechanism; individual MF molecules rapidly escape the surface when exposed by water loss, while GA lingers and is destroyed by H. Moderately elevated cosmic-ray ionization rates can increase absolute levels of “complex organic molecule” (COM) production in the ices and increase the MF:GA ratio, but extreme values are destructive for gas-phase COMs. We speculate that the high densities required for extreme MF:GA ratios could be evidence of COM emission dominated by COMs desorbing within a circumstellar disk.more » « less
-
The temperature-dependent desorption behavior of selenium and tellurium is investigated using a heated quartz crystal microbalance. Prior to heating the quartz crystal microbalance, selenium and tellurium films with varying thickness were deposited using thermal effusion cells in a molecular beam epitaxy system for subsequent determination of temperature-dependent mass loss of the deposited films. The desorption rate for tellurium was found to exhibit one sharp peak around 190 °C, indicating the loss of the entire film irrespective of film thickness within a temperature window of 20 °C, which was completely evaporated at 200 °C. Similar experiments for selenium revealed that the thermal desorption took place via a two-stage process with a smaller portion of the material desorbing within an even narrower temperature window of 5 °C at a much lower peak temperature of 65 °C, while most selenium desorbed within a temperature range of 10 °C around 90 °C. This two-stage behavior indicated the presence of at least two chemically distinct selenium species or binding states. The direct and quantitative determination of the chalcogen desorption process provides important insights into the kinetics of chalcogenide-based film growth and is in addition of applied benefit to the research community in the area of Se/Te capping and decapping of air sensitive materials as it provides temperature ranges and rates at which full desorption is achieved. Our work furthermore points toward the need for a more detailed understanding of the chemical composition state of atomic and molecular beams supplied from thermal evaporation sources during growth.more » « less
-
The experimentally validated computational models developed herein, for the first time, show that Mn-promotion does not enhance the activity of the surface Na 2 WO 4 catalytic active sites for CH 4 heterolytic dissociation during OCM. Contrary to previous understanding, it is demonstrated that Mn-promotion poisons the surface WO 4 catalytic active sites resulting in surface WO 5 sites with retarded kinetics for C–H scission. On the other hand, dimeric Mn 2 O 5 surface sites, identified and studied via ab initio molecular dynamics and thermodynamics, were found to be more efficient in activating CH 4 than the poisoned surface WO 5 sites or the original WO 4 sites. However, the surface reaction intermediates formed from CH 4 activation over the Mn 2 O 5 surface sites are more stable than those formed over the Na 2 WO 4 surface sites. The higher stability of the surface intermediates makes their desorption unfavorable, increasing the likelihood of over-oxidation to CO x , in agreement with the experimental findings in the literature on Mn-promoted catalysts. Consequently, the Mn-promoter does not appear to have an essential positive role in synergistically tuning the structure of the Na 2 WO 4 surface sites towards CH 4 activation but can yield MnO x surface sites that activate CH 4 faster than Na 2 WO 4 surface sites, but unselectively.more » « less
An official website of the United States government

