skip to main content

Title: A self-consistent semi-analytic model for Population III star formation in minihaloes

The formation of the first stars marks a watershed moment in the history of our Universe. As the first luminous structures, these stars (also known as Population III, or Pop III stars) seed the first galaxies and begin the process of reionization. We construct an analytic model to self-consistently trace the formation of Pop III stars inside minihaloes in the presence of the fluctuating ultraviolet background, relic dark matter (DM)-baryon relative velocities from the early universe, and an X-ray background, which largely work to suppress cooling of gas and delay the formation of this first generation of stars. We demonstrate the utility of this framework in a semi-analytic model for early star formation that also follows the transition between Pop III and Pop II star formation inside these haloes. Using our new prescription for the criteria allowing Pop III star formation, we follow a population of DM haloes from z = 50 through z = 6 and examine the global star formation history, finding that each process defines its own key epoch: (i) the stream velocity dominates at the highest redshifts (z ≳ 30), (ii) the UV background sets the tone at intermediate times (30 ≳ z ≳ 15), and (iii) X-rays control the end of Pop III star formation at the latest times (z ≲ 15). In all of our models, Pop III stars continue to form down to z ∼ 7–10, when their supernovae will be potentially observable with forthcoming instruments. Finally, we identify the signatures of variations in the Pop III physics in the global 21-cm spin–flip signal of atomic hydrogen.

more » « less
Award ID(s):
Author(s) / Creator(s):
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Page Range / eLocation ID:
p. 428-447
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT The cosmic near-infrared background (NIRB) offers a powerful integral probe of radiative processes at different cosmic epochs, including the pre-reionization era when metal-free, Population III (Pop III) stars first formed. While the radiation from metal-enriched, Population II (Pop II) stars likely dominates the contribution to the observed NIRB from the reionization era, Pop III stars – if formed efficiently – might leave characteristic imprints on the NIRB, thanks to their strong Lyα emission. Using a physically motivated model of first star formation, we provide an analysis of the NIRB mean spectrum and anisotropy contributed by stellar populations at z > 5. We find that in circumstances where massive Pop III stars persistently form in molecular cooling haloes at a rate of a few times $10^{-3}\, \mathrm{ M}_\odot \ \mathrm{yr}^{-1}$, before being suppressed towards the epoch of reionization (EoR) by the accumulated Lyman–Werner background, a unique spectral signature shows up redward of $1\, \mu$m in the observed NIRB spectrum sourced by galaxies at z > 5. While the detailed shape and amplitude of the spectral signature depend on various factors including the star formation histories, initial mass function, LyC escape fraction and so forth, the most interesting scenarios with efficient Pop III star formation are within the reach of forthcoming facilities, such as the Spectro-Photometer for the History of the Universe, Epoch of Reionization, and Ices Explorer. As a result, new constraints on the abundance and formation history of Pop III stars at high redshifts will be available through precise measurements of the NIRB in the next few years. 
    more » « less
  2. ABSTRACT We investigate the effects of Population III (Pop III) stars and their remnants on the cosmological 21-cm global signal. By combining a semi-analytic model of Pop III star formation with a global 21-cm simulation code, we investigate how X-ray and radio emission from accreting Pop III black holes may affect both the timing and depth of the 21-cm absorption feature that follows the initial onset of star formation during the Cosmic Dawn. We compare our results to the findings of the EDGES experiment, which has reported the first detection of a cosmic 21-cm signal. In general, we find that our fiducial Pop III models, which have peak star formation rate densities of ∼10−4 M⊙ yr−1 Mpc−3 between z ∼ 10 and z ∼ 15, are able to match the timing of the EDGES signal quite well, in contrast to models that ignore Pop III stars. To match the unexpectedly large depth of the EDGES signal without recourse to exotic physics, we vary the parameters of emission from accreting black holes (formed as Pop III remnants) including the intrinsic strength of X-ray and radio emission as well as the local column density of neutral gas. We find that models with strong radio emission and relatively weak X-ray emission can self-consistently match the EDGES signal, though this solution requires fine-tuning. We are only able to produce signals with sharp features similar to the EDGES signal if the Pop III IMF is peaked narrowly around $140 \, \mathrm{M}_\odot$. 
    more » « less
  3. null (Ed.)
    ABSTRACT The formation of Population III (Pop III) stars is a critical step in the evolution of the early Universe. To understand how these stars affected their metal-enriched descendants, the details of how, why and where Pop III formation takes place needs to be determined. One of the processes that is assumed to greatly affect the formation of Pop III stars is the presence of a Lyman–Werner (LW) radiation background, that destroys H2, a necessary coolant in the creation of Pop III stars. Self-shielding can alleviate the effect the LW background has on the H2 within haloes. In this work, we perform a cosmological simulation to study the birthplaces of Pop III stars, using the adaptive mesh refinement code enzo. We investigate the distribution of host halo masses and its relationship to the LW background intensity. Compared to previous work, haloes form Pop III stars at much lower masses, up to a factor of a few, due to the inclusion of H2 self-shielding. We see no relationship between the LW intensity and host halo mass. Most haloes form multiple Pop III stars, with a median number of four, up to a maximum of 16, at the instance of Pop III formation. Our results suggest that Pop III star formation may be less affected by LW radiation feedback than previously thought and that Pop III multiple systems are common. 
    more » « less
  4. Abstract

    The formation of globular clusters and their relation to the distribution of dark matter have long puzzled astronomers. One of the most recently proposed globular cluster formation channels ties ancient star clusters to the large-scale streaming velocity of baryons relative to dark matter in the early universe. These streaming velocities affect the global infall of baryons into dark matter halos, the high-redshift halo mass function, and the earliest generations of stars. In some cases, streaming velocities may result in dense regions of dark matter-free gas that becomes Jeans unstable, potentially leading to the formation of compact star clusters. We investigate this hypothesis using cosmological hydrodynamical simulations that include a full chemical network and the formation and destruction of H2, a process crucial for the formation of the first stars. We find that high-density gas in regions with significant streaming velocities is indeed somewhat offset from the centers of dark matter halos, but this offset is typically significantly smaller than the virial radius. Gas outside of dark matter halos never reaches Jeans-unstable densities in our simulations. We postulate that low-level (Z≈ 10−3Z) metal enrichment by Population III supernovae may enable cooling in the extra-virial regions, allowing gas outside of dark matter halos to cool to the cosmic microwave background temperature and become Jeans unstable. Follow-up simulations that include both streaming velocities and metal enrichment by Population III supernovae are needed to understand if streaming velocities provide one path for the formation of globular clusters in the early universe.

    more » « less
  5. Abstract

    We present a new self-consistent semianalytic model of the first stars and galaxies to explore the high-redshift (z≥ 15) Population III (PopIII) and metal-enriched star formation histories. Our model includes the detailed merger history of dark matter halos generated with Monte Carlo merger trees. We calibrate the minimum halo mass for PopIII star formation from recent hydrodynamical cosmological simulations that simultaneously include the baryon–dark matter streaming velocity, Lyman–Werner (LW) feedback, and molecular hydrogen self-shielding. We find an overall increase in the resulting star formation rate density (SFRD) compared to calibrations based on previous simulations (e.g., the PopIII SFRD is over an order of magnitude higher atz= 35−15). We evaluate the effect of the halo-to-halo scatter in this critical mass and find that it increases the PopIII stellar mass density by a factor ∼1.5 atz≥ 15. Additionally, we assess the impact of various semianalytic/analytic prescriptions for halo assembly and star formation previously adopted in the literature. For example, we find that models assuming smooth halo growth computed via abundance matching predict SFRDs similar to the merger tree model for our fiducial model parameters, but that they may underestimate the PopIII SFRD in cases of strong LW feedback. Finally, we simulate subvolumes of the Universe with our model both to quantify the reduction in total star formation in numerical simulations due to a lack of density fluctuations on spatial scales larger than the simulation box, and to determine spatial fluctuations in SFRD due to the diversity in halo abundances and merger histories.

    more » « less