skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A self-consistent semi-analytic model for Population III star formation in minihaloes
ABSTRACT The formation of the first stars marks a watershed moment in the history of our Universe. As the first luminous structures, these stars (also known as Population III, or Pop III stars) seed the first galaxies and begin the process of reionization. We construct an analytic model to self-consistently trace the formation of Pop III stars inside minihaloes in the presence of the fluctuating ultraviolet background, relic dark matter (DM)-baryon relative velocities from the early universe, and an X-ray background, which largely work to suppress cooling of gas and delay the formation of this first generation of stars. We demonstrate the utility of this framework in a semi-analytic model for early star formation that also follows the transition between Pop III and Pop II star formation inside these haloes. Using our new prescription for the criteria allowing Pop III star formation, we follow a population of DM haloes from z = 50 through z = 6 and examine the global star formation history, finding that each process defines its own key epoch: (i) the stream velocity dominates at the highest redshifts (z ≳ 30), (ii) the UV background sets the tone at intermediate times (30 ≳ z ≳ 15), and (iii) X-rays control the end of Pop III star formation at the latest times (z ≲ 15). In all of our models, Pop III stars continue to form down to z ∼ 7–10, when their supernovae will be potentially observable with forthcoming instruments. Finally, we identify the signatures of variations in the Pop III physics in the global 21-cm spin–flip signal of atomic hydrogen.  more » « less
Award ID(s):
1812458
PAR ID:
10440612
Author(s) / Creator(s):
;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
525
Issue:
1
ISSN:
0035-8711
Format(s):
Medium: X Size: p. 428-447
Size(s):
p. 428-447
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT The cosmic near-infrared background (NIRB) offers a powerful integral probe of radiative processes at different cosmic epochs, including the pre-reionization era when metal-free, Population III (Pop III) stars first formed. While the radiation from metal-enriched, Population II (Pop II) stars likely dominates the contribution to the observed NIRB from the reionization era, Pop III stars – if formed efficiently – might leave characteristic imprints on the NIRB, thanks to their strong Lyα emission. Using a physically motivated model of first star formation, we provide an analysis of the NIRB mean spectrum and anisotropy contributed by stellar populations at z > 5. We find that in circumstances where massive Pop III stars persistently form in molecular cooling haloes at a rate of a few times $$10^{-3}\, \mathrm{ M}_\odot \ \mathrm{yr}^{-1}$$, before being suppressed towards the epoch of reionization (EoR) by the accumulated Lyman–Werner background, a unique spectral signature shows up redward of $$1\, \mu$$m in the observed NIRB spectrum sourced by galaxies at z > 5. While the detailed shape and amplitude of the spectral signature depend on various factors including the star formation histories, initial mass function, LyC escape fraction and so forth, the most interesting scenarios with efficient Pop III star formation are within the reach of forthcoming facilities, such as the Spectro-Photometer for the History of the Universe, Epoch of Reionization, and Ices Explorer. As a result, new constraints on the abundance and formation history of Pop III stars at high redshifts will be available through precise measurements of the NIRB in the next few years. 
    more » « less
  2. null (Ed.)
    ABSTRACT The formation of Population III (Pop III) stars is a critical step in the evolution of the early Universe. To understand how these stars affected their metal-enriched descendants, the details of how, why and where Pop III formation takes place needs to be determined. One of the processes that is assumed to greatly affect the formation of Pop III stars is the presence of a Lyman–Werner (LW) radiation background, that destroys H2, a necessary coolant in the creation of Pop III stars. Self-shielding can alleviate the effect the LW background has on the H2 within haloes. In this work, we perform a cosmological simulation to study the birthplaces of Pop III stars, using the adaptive mesh refinement code enzo. We investigate the distribution of host halo masses and its relationship to the LW background intensity. Compared to previous work, haloes form Pop III stars at much lower masses, up to a factor of a few, due to the inclusion of H2 self-shielding. We see no relationship between the LW intensity and host halo mass. Most haloes form multiple Pop III stars, with a median number of four, up to a maximum of 16, at the instance of Pop III formation. Our results suggest that Pop III star formation may be less affected by LW radiation feedback than previously thought and that Pop III multiple systems are common. 
    more » « less
  3. ABSTRACT We investigate the effects of Population III (Pop III) stars and their remnants on the cosmological 21-cm global signal. By combining a semi-analytic model of Pop III star formation with a global 21-cm simulation code, we investigate how X-ray and radio emission from accreting Pop III black holes may affect both the timing and depth of the 21-cm absorption feature that follows the initial onset of star formation during the Cosmic Dawn. We compare our results to the findings of the EDGES experiment, which has reported the first detection of a cosmic 21-cm signal. In general, we find that our fiducial Pop III models, which have peak star formation rate densities of ∼10−4 M⊙ yr−1 Mpc−3 between z ∼ 10 and z ∼ 15, are able to match the timing of the EDGES signal quite well, in contrast to models that ignore Pop III stars. To match the unexpectedly large depth of the EDGES signal without recourse to exotic physics, we vary the parameters of emission from accreting black holes (formed as Pop III remnants) including the intrinsic strength of X-ray and radio emission as well as the local column density of neutral gas. We find that models with strong radio emission and relatively weak X-ray emission can self-consistently match the EDGES signal, though this solution requires fine-tuning. We are only able to produce signals with sharp features similar to the EDGES signal if the Pop III IMF is peaked narrowly around $$140 \, \mathrm{M}_\odot$$. 
    more » « less
  4. Abstract We investigate how stellar feedback from the first stars (Population III) distributes metals through the interstellar and intergalactic medium using the star-by-star cosmological hydrodynamics simulation, Aeos. We find that energy injected from the supernovae (SNe) of the first stars is enough to expel a majority of gas and injected metals beyond the virial radius of halos with massMdm ≲ 107M, regardless of the number of SNe. This prevents self-enrichment and results in a nonmonotonic increase in metallicity at early times. Most minihalos (Mdm ≳ 105M) do not retain significant fractions of the yields produced within their virial radii until they have grown to halo masses ofMdm ≳ 107M. The loss of metals to regions well beyond the virial radius delays the onset of enriched star formation and extends the period that Population III star formation can persist. We also explore the contributions of different nucleosynthetic channels to 10 individual elements. On the timescale of the simulation (lowest redshiftz= 14.3), enrichment is dominated by core-collapse supernovae for all elements, but with a significant contribution from asymptotic giant branch winds to thes-process elements, which are normally thought to only be important at late times. In this work, we establish important mechanisms for early chemical enrichment, which allows us to apply Aeosin later epochs to trace the evolution of enrichment during the complete transition from Population III to Population II stars. 
    more » « less
  5. Abstract The recent discovery of the extremely lensed Earendel object at z = 6.2 is remarkable in that it is likely a single star or stellar multiple, observed within the first billion years of cosmic history. Depending on its mass, which is still uncertain but will soon be more tightly constrained with the James Webb Space Telescope, the Earendel star might even be a member of the first generation of stars, the so-called Population III (Pop III). By combining results from detailed cosmological simulations of the assembly of the first galaxies, including the enrichment of the pristine gas with heavy chemical elements, with assumptions on key stellar parameters, we quantify the probability that Earendel indeed has a Pop III origin. We find that this probability is nonnegligible throughout the mass range inferred for Earendel, specifically ranging from a few percent at the lower-mass end to near unity for some Pop III initial mass function (IMF) models toward the high-mass end of the allowed range. For models that extend the metal-enriched IMF to 500 M ⊙ , the likelihood of Earendel being a Pop III star stays at the few to 10% level. We discuss the implications of such a discovery for the overall endeavor to probe the hitherto so elusive first stars in the universe. 
    more » « less