skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Designed quadrature to approximate integrals in maximum simulated likelihood estimation
Summary Maximum simulated likelihood estimation of mixed multinomial logit models requires evaluation of a multidimensional integral. Quasi-Monte Carlo (QMC) methods such as Halton sequences and modified Latin hypercube sampling are workhorse methods for integral approximation. Earlier studies explored the potential of sparse grid quadrature (SGQ), but SGQ suffers from negative weights. As an alternative to QMC and SGQ, we looked into the recently developed designed quadrature (DQ) method. DQ requires fewer nodes to get the same level of accuracy as QMC and SGQ, is as easy to implement, ensures positivity of weights, and can be created on any general polynomial space. We benchmarked DQ against QMC in a Monte Carlo and an empirical study. DQ outperformed QMC in all considered scenarios, is practice ready, and has potential to become the workhorse method for integral approximation.  more » « less
Award ID(s):
1253475
PAR ID:
10440656
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
The Econometrics Journal
Volume:
25
Issue:
2
ISSN:
1368-4221
Page Range / eLocation ID:
301 to 321
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Li, J.; Spanos, P. D.; Chen, J. B.; Peng, Y. B. (Ed.)
    Infrastructure networks offer critical services to modern society. They dynamically interact with the environment, operators, and users. Infrastructure networks are unique engineered systems, large in scale and high in complexity. One fundamental issue for their reliability assessment is the uncertainty propagation from stochastic disturbances across interconnected components. Monte Carlo simulation (MCS) remains approachable to quantify stochastic dynamics from components to systems. Its application depends on time efficiency along with the capability of delivering reliable approximations. In this paper, we introduce Quasi Monte Carlo (QMC) sampling techniques to improve modeling efficiency. Also, we suggest a principled Monte Carlo (PMC) method that equips the crude MCS with Probably Approximately Correct (PAC) approaches to deliver guaranteed approximations. We compare our proposed schemes with a competitive approach for stochastic dynamic analysis, namely the Probability Density Evolution Method (PDEM). Our computational experiments are on ideal but complex enough source-terminal (S-T) dynamic network reliability problems. We endow network links with oscillators so that they can jump across safe and failed states allowing us to treat the problem from a stochastic process perspective. We find that QMC alone can yield practical accuracy, and PMC with a PAC algorithm can deliver accuracy guarantees. Also, QMC is more versatile and efficient than the PDEM for network reliability assessment. The QMC and PMC methods provide advanced uncertainty propagation techniques to support decision makers with their reliability problems. 
    more » « less
  2. We review recent advances in algorithms for quadrature, transforms, differential equations and singular integral equations using orthogonal polynomials. Quadrature based on asymptotics has facilitated optimal complexity quadrature rules, allowing for efficient computation of quadrature rules with millions of nodes. Transforms based on rank structures in change-of-basis operators allow for quasi-optimal complexity, including in multivariate settings such as on triangles and for spherical harmonics. Ordinary and partial differential equations can be solved via sparse linear algebra when set up using orthogonal polynomials as a basis, provided that care is taken with the weights of orthogonality. A similar idea, together with low-rank approximation, gives an efficient method for solving singular integral equations. These techniques can be combined to produce high-performance codes for a wide range of problems that appear in applications. 
    more » « less
  3. The continuous-time Markov chain (CTMC) is the mathematical workhorse of evolutionary biology. Learning CTMC model parameters using modern, gradient-based methods requires the derivative of the matrix exponential evaluated at the CTMC’s infinitesimal generator (rate) matrix. Motivated by the derivative’s extreme computational complexity as a function of state space cardinality, recent work demonstrates the surprising effectiveness of a naive, first-order approximation for a host of problems in computational biology. In response to this empirical success, we obtain rigorous deterministic and probabilistic bounds for the error accrued by the naive approximation and establish a “blessing of dimensionality” result that is universal for a large class of rate matrices with random entries. Finally, we apply the first-order approximation within surrogate-trajectory Hamiltonian Monte Carlo for the analysis of the early spread of Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) across 44 geographic regions that comprise a state space of unprecedented dimensionality for unstructured (flexible) CTMC models within evolutionary biology. 
    more » « less
  4. We present a novel technique for tailoring Bayesian quadrature (BQ) to model selection. The state-of-the-art for comparing the evidence of multiple models relies on Monte Carlo methods, which converge slowly and are unreliable for computationally expensive models. Although previous research has shown that BQ offers sample efficiency superior to Monte Carlo in computing the evidence of an individual model, applying BQ directly to model comparison may waste computation producing an overly-accurate estimate for the evidence of a clearly poor model. We propose an automated and efficient algorithm for computing the most-relevant quantity for model selection: the posterior model probability. Our technique maximizes the mutual information between this quantity and observations of the models’ likelihoods, yielding efficient sample acquisition across disparate model spaces when likelihood observations are limited. Our method produces more-accurate posterior estimates using fewer likelihood evaluations than standard Bayesian quadrature and Monte Carlo estimators, as we demonstrate on synthetic and real-world examples. 
    more » « less
  5. In computational mechanics, multiple models are often present to describe a physical system. While Bayesian model selection is a helpful tool to compare these models using measurement data, it requires the computationally expensive estimation of a multidimensional integral — known as the marginal likelihood or as the model evidence (i.e., the probability of observing the measured data given the model) — over the multidimensional parameter domain. This study presents efficient approaches for estimating this marginal likelihood by transforming it into a one-dimensional integral that is subsequently evaluated using a quadrature rule at multiple adaptively-chosen iso-likelihood contour levels. Three different algorithms are proposed to estimate the probability mass at each adapted likelihood level using samples from importance sampling, stratified sampling, and Markov chain Monte Carlo (MCMC) sampling, respectively. The proposed approach is illustrated — with comparisons to Monte Carlo, nested, and MultiNest sampling — through four numerical examples. The first, an elementary example, shows the accuracies of the three proposed algorithms when the exact value of the marginal likelihood is known. The second example uses an 11-story building subjected to an earthquake excitation with an uncertain hysteretic base isolation layer with two models to describe the isolation layer behavior. The third example considers flow past a cylinder when the inlet velocity is uncertain. Based on the these examples, the method with stratified sampling is by far the most accurate and efficient method for complex model behavior in low dimension, particularly considering that this method can be implemented to exploit parallel computation. In the fourth example, the proposed approach is applied to heat conduction in an inhomogeneous plate with uncertain thermal conductivity modeled through a 100 degree-of-freedom Karhunen–Loève expansion. The results indicate that MultiNest cannot efficiently handle the high-dimensional parameter space, whereas the proposed MCMC-based method more accurately and efficiently explores the parameter space. The marginal likelihood results for the last three examples — when compared with the results obtained from standard Monte Carlo sampling, nested sampling, and MultiNest algorithm — show good agreement. 
    more » « less