skip to main content


Title: A General Context Learning and Reasoning Framework for Object Detection in Urban Scenes [A General Context Learning and Reasoning Framework for Object Detection in Urban Scenes]
Contextual information has been widely used in many computer vision tasks. However, existing approaches design specific contextual information mechanisms for different tasks. In this work, we propose a general context learning and reasoning framework for object detection tasks with three components: local contextual labeling, contextual graph generation and spatial contextual reasoning. With simple user defined parameters, local contextual labeling automatically enlarge the small object labels to include more local contextual information. A Graph Convolutional Network learns over the generated contextual graph to build a semantic space. A general spatial relation is used in spatial contextual reasoning to optimize the detection results. All three components can be easily added and removed from a standard object detector. In addition, our approach also automates the training process to find the optimal combinations of user defined parameters. The general framework can be easily adapted to different tasks. In this paper we compare our framework with a previous multistage context learning framework specifically designed for storefront accessibility detection and a state of the art detector for pedestrian detection. Experimental results on two urban scene datasets demonstrate that our proposed general framework can achieve same performance as the specifically designed multistage framework on storefront accessibility detection, and with improved performance on pedestrian detection over the state of art detector.  more » « less
Award ID(s):
2131186 1827505
NSF-PAR ID:
10440689
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the 18th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2023)
Volume:
5
Issue:
VISAPP
Page Range / eLocation ID:
91 to 102
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this work, a storefront accessibility image dataset is collected from Google street view and is labeled with three main objects for storefront accessibility: doors (for store entrances), doorknobs (for accessing the entrances) and stairs (for leading to the entrances). Then MultiCLU, a new multi-stage context learning and utilization approach, is proposed with the following four stages: Context in Labeling (CIL), Context in Training (CIT), Context in Detection (CID) and Context in Evaluation (CIE). The CIL stage automatically extends the label for each knob to include more local contextual information. In the CIT stage, a deep learning method is used to project the visual information extracted by a Faster R-CNN based object detector to semantic space generated by a Graph Convolutional Network. The CID stage uses the spatial relation reasoning between categories to refine the confidence score. Finally in the CIE stage, a new loose evaluation metric for storefront accessibility, especially for knob category, is proposed to efficiently help BLV users to find estimated knob locations. Our experiment results show that the proposed MultiCLU framework can achieve significantly better performance than the baseline detector using Faster R-CNN, with +13.4% on mAP and +15.8% on recall, respectively. Our new evaluation metric also introduces a new way to evaluate storefront accessibility objects, which could benefit BLV group in real life. 
    more » « less
  2. The benefits of utilizing spatial context in fast object detection algorithms have been studied extensively. Detectors increase inference speed by doing a single forward pass per image which means they implicitly use contextual reasoning for their predictions. However, one can show that an adversary can design adversarial patches which do not overlap with any objects of interest in the scene and exploit con- textual reasoning to fool standard detectors. In this paper, we examine this problem and design category specific adversarial patches which make a widely used object detector like YOLO blind to an attacker chosen object category. We also show that limiting the use of spatial context during object detector training improves robustness to such adversaries. We believe the existence of context based adversarial attacks is concerning since the adversarial patch can affect predictions without being in vicinity of any objects of interest. Hence, defending against such attacks becomes challenging and we urge the research community to give attention to this vulnerability. 
    more » « less
  3. This paper presents an approach to detect out-of-context (OOC) objects in an image. Given an image with a set of objects, our goal is to determine if an object is inconsistent with the scene context and detect the OOC object with a bounding box. In this work, we consider commonly explored contextual relations such as co-occurrence relations, the relative size of an object with respect to other objects, and the position of the object in the scene. We posit that contextual cues are useful to determine object labels for in-context objects and inconsistent context cues are detrimental to determining object labels for out-of-context objects. To realize this hypothesis, we propose a graph contextual reasoning network (GCRN) to detect OOC objects. GCRN consists of two separate graphs to predict object labels based on the contextual cues in the image: 1) a representation graph to learn object features based on the neighboring objects and 2) a context graph to explicitly capture contextual cues from the neighboring objects. GCRN explicitly captures the contextual cues to improve the detection of in-context objects and identify objects that violate contextual relations. In order to evaluate our approach, we create a large-scale dataset by adding OOC object instances to the COCO images. We also evaluate on recent OCD benchmark. Our results show that GCRN outperforms competitive baselines in detecting OOC objects and correctly detecting in-context objects. 
    more » « less
  4. This paper presents an approach to detect out-of-context (OOC) objects in an image. Given an image with a set of objects, our goal is to determine if an object is inconsistent with the scene context and detect the OOC object with a bounding box. In this work, we consider commonly explored contextual relations such as co-occurrence relations, the relative size of an object with respect to other objects, and the position of the object in the scene. We posit that contextual cues are useful to determine object labels for in-context objects and inconsistent context cues are detrimental to determining object labels for out-of-context objects. To realize this hypothesis, we propose a graph contextual reasoning network (GCRN) to detect OOC objects. GCRN consists of two separate graphs to predict object labels based on the contextual cues in the image: 1) a representation graph to learn object features based on the neighboring objects and 2) a context graph to explicitly capture contextual cues from the neighboring objects. GCRN explicitly captures the contextual cues to improve the detection of in-context objects and identify objects that violate contextual relations. In order to evaluate our approach, we create a large-scale dataset by adding OOC object instances to the COCO images. We also evaluate on recent OCD benchmark. Our results show that GCRN outperforms competitive baselines in detecting OOC objects and correctly detecting in-context objects. 
    more » « less
  5. Detecting small objects (e.g., manhole covers, license plates, and roadside milestones) in urban images is a long-standing challenge mainly due to the scale of small object and background clutter. Although convolution neural network (CNN)-based methods have made significant progress and achieved impressive results in generic object detection, the problem of small object detection remains unsolved. To address this challenge, in this study we developed an end-to-end network architecture that has three significant characteristics compared to previous works. First, we designed a backbone network module, namely Reduced Downsampling Network (RD-Net), to extract informative feature representations with high spatial resolutions and preserve local information for small objects. Second, we introduced an Adjustable Sample Selection (ADSS) module which frees the Intersection-over-Union (IoU) threshold hyperparameters and defines positive and negative training samples based on statistical characteristics between generated anchors and ground reference bounding boxes. Third, we incorporated the generalized Intersection-over-Union (GIoU) loss for bounding box regression, which efficiently bridges the gap between distance-based optimization loss and area-based evaluation metrics. We demonstrated the effectiveness of our method by performing extensive experiments on the public Urban Element Detection (UED) dataset acquired by Mobile Mapping Systems (MMS). The Average Precision (AP) of the proposed method was 81.71%, representing an improvement of 1.2% compared with the popular detection framework Faster R-CNN. 
    more » « less