skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Evaluating learning of motion graphs with a LiDAR-based smartphone application
Data modeling and graphing skill sets are foundational to science learning and careers, yet students regularly struggle to master these basic competencies. Further, although educational researchers have uncovered numerous approaches to support sense-making with mathematical models of motion, teachers sometimes struggle to enact them due to a variety of reasons, including limited time and materials for lab-based teaching opportunities and a lack of awareness of student learning difficulties. In this paper, we introduce a free smartphone application that uses LiDAR data to support motion-based physics learning with an emphasis on graphing and mathematical modeling. We tested the embodied technology, called LiDAR Motion, with 106 students in a non-major, undergraduate physics classroom at a mid-sized, private university on the U.S. East Coast. In identical learning assessments issued both before and after the study, students working with LiDAR Motion improved their scores by a more significant margin than those using standard issue sonic rangers. Further, per a voluntary survey, students who used both technologies expressed a preference for LiDAR Motion. This mobile application holds potential for improving student learning in the classroom, at home, and in alternative learning environments.  more » « less
Award ID(s):
2114586
PAR ID:
10440762
Author(s) / Creator(s):
; ; ;
Editor(s):
Jones, D.; Ryan, Q.; Pawl, A.
Date Published:
Journal Name:
Proceedings of the Physics Education Research Conference
ISSN:
1539-9028
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Warfa, Abdi (Ed.)
    Students’ perceptions of challenges in biology influence performance outcomes, experiences, and persistence in science. Identifying sources of student struggle can assist efforts to support students as they overcome challenges in their undergraduate educations. In this study, we characterized student experiences of struggle by 1) quantifying which external factors relate to perceptions of encountering and overcoming struggle in introductory biology and 2) identifying factors to which students attribute their struggle in biology. We found a significant effect of Course, Instructor, and Incoming Preparation on student struggle, in which students with lower Incoming Preparation were more likely to report struggle and the inability to overcome struggle. We also observed significant differences in performance outcomes between students who did and did not encounter struggle and between students who did and did not overcome their struggle. Using inductive coding, we categorized student responses outlining causes of struggle, and using axial coding, we further categorized these as internally or externally attributed factors. External sources (i.e., Prior Biology, COVID-19, External Resources, Classroom Factors) were more commonly cited as the reason(s) students did or did not struggle. We conclude with recommendations for instructors, highlighting equitable teaching strategies and practices. 
    more » « less
  2. null (Ed.)
    Abstract Engineering students need to spend time engaging in mathematical modeling tasks to reinforce their learning of mathematics through its application to authentic problems and real world design situations. Technological tools and resources can support this kind of learning engagement. We produced an online module that develops students’ mathematical modeling skills while developing knowledge of the fundamentals of rainfall-runoff processes and engineering design. This study examined how 251 students at two United States universities perceived mathematical modeling as implemented through the online module over a 5-year period. We found, subject to the limitation that these are perceptions from not all students, that: (a) the module allowed students to be a part of the modeling process; (b) using technology, such as modeling software and online databases, in the module helped students to understand what they were doing in mathematical modeling; (c) using the technology in the module helped students to develop their skill set; and (d) difficulties with the technology and/or the modeling decisions they had to make in the module activities were in some cases barriers that interfered with students’ ability to learn. We advocate for instructors to create modules that: (a) are situated within a real-world context, requiring students to model mathematically to solve an authentic problem; (b) take advantage of digital tools used by engineers to support students’ development of the mathematical and engineering skills needed in the workforce; and (c) use student feedback to guide module revisions. 
    more » « less
  3. Many undergraduate students encounter struggle as they navigate academic, financial, and social contexts of higher education. The transition to emergency online instruction during the Spring of 2020 due to the COVID-19 pandemic exacerbated these struggles. To assess college students’ struggles during the transition to online learning in undergraduate biology courses, we surveyed a diverse collection of students ( n = 238) at an R2 research institution in the Southeastern United States. Students were asked if they encountered struggles and whether they were able to overcome them. Based on how students responded, they were asked to elaborate on (1) how they persevered without struggle, (2) how they were able to overcome their struggles, or (3) what barriers they encountered that did not allow them to overcome their struggles. Each open-ended response was thematically coded to address salient patterns in students’ ability to either persevere or overcome their struggle. We found that during the transition to remote learning, 67% of students experienced struggle. The most reported struggles included: shifts in class format, effective study habits, time management, and increased external commitments. Approximately, 83% of those struggling students were able to overcome their struggle, most often citing their instructor’s support and resources offered during the transition as reasons for their success. Students also cited changes in study habits, and increased confidence or belief that they could excel within the course as ways in which they overcame their struggles. Overall, we found no link between struggles in the classroom and any demographic variables we measured, which included race/ethnicity, gender expression, first-generation college students, transfer student status, and commuter student status. Our results highlight the critical role that instructors play in supporting student learning during these uncertain times by promoting student self-efficacy and positive-growth mindset, providing students with the resources they need to succeed, and creating a supportive and transparent learning environment. 
    more » « less
  4. ABSTRACT Physics forms the core of any Materials Science Programme at undergraduate level. Knowing the properties of materials is fundamental to developing and designing new materials and new applications for known materials. “Physical Physics” is a physics education approach which is an innovative and promising instruction model that integrates physical activity with mechanics and material properties. It aims to significantly enhance the learning experience and to illustrate how physics works, while allowing students to be active participants and take ownership of the learning process. It has been successfully piloted with undergraduate students studying mechanics on a Games Development Programme. It is a structured guided learning approach which provides a scaffold for learners to develop their problem solving skills. The objective of having applied physics on a programme is to introduce students to the mathematical world. Today students view the world through smart devices. By incorporating student recorded videos into the laboratory experience the student can visualise the mathematical world. Sitting in a classroom learning about material properties does not easily facilitate an understanding of mathematical equations as mapping to a physical reality. In order to get the students motivated and immersed in the real mathematical and physical world, an approach which makes them think about the cause and effect of actions is used. Incorporating physical action with physics enables students to assimilate knowledge and adopt an action problem solving approach to the physics concept. This is an integrated approach that requires synthesis of information from various sources in order to accomplish the task. As a transferable skill, this will ensure that the material scientists will be visionary in their approach to real life problems. 
    more » « less
  5. Wright, L Kate (Ed.)
    ABSTRACT Quantitative reasoning is a critical skill in biology and has been highlighted as a core competency byVision and Change. Despite its importance, students often struggle to apply mathematical skills in new contexts in biology, a process called transfer of knowledge. However, the supports and barriers that students perceive for this process remain unclear. To explore this further, we interviewed undergraduate students in an introductory biology lab course about how they understand and report the transfer of quantitative skills in these courses. We then applied these themes to the Step Back, Translate, and Extend (SBTE) framework to examine student perceptions of the supports and barriers to their knowledge transfer. Students reported different supports and barriers at each level of the transfer process. At the first step of the framework, the recognition level, students reported reflecting on previous chemistry, statistics, and physics learning as helpful cues to indicate a transfer opportunity. Others, however, reported perceiving math and science as separate subjects without overlap, causing a disconnect in their recognition of transferable knowledge. In the second level of the framework, students recall previous learning. Students reported repetition and positive dispositions toward science and math as supportive factors. In contrast, gaps of time between initial learning and new contexts and negative dispositions hindered recall ability. The final level of the SBTE framework focuses on application. Students reported being better able to apply previous learning to new contexts in the biology lab when they could relate their applied skills to “real-world” applications, external motivating factors, and future career goals. These students also reported proactively seeking outside resources to fill gaps in their understanding. Generating data in a lab setting was also mentioned by students as both a supportive factor of application when they felt confident in their answers and a hindrance to application when they felt unsure about its accuracy. 
    more » « less