skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Title: End-to-end Characterization of Game Streaming Applications on Mobile Platforms
With the advent of 5G, supporting high-quality game streaming applications on edge devices has become a reality. This is evidenced by a recent surge in cloud gaming applications on mobile devices. In contrast to video streaming applications, interactive games require much more compute power for supporting improved rendering (such as 4K streaming) with the stipulated frames-per second (FPS) constraints. This in turn consumes more battery power in a power-constrained mobile device. Thus, the state-of-the-art gaming applications suffer from lower video quality (QoS) and/or energy efficiency. While there has been a plethora of recent works on optimizing game streaming applications, to our knowledge, there is no study that systematically investigates the design pairs on the end-to-end game streaming pipeline across the cloud, network, and edge devices to understand the individual contributions of the different stages of the pipeline for improving the overall QoS and energy efficiency. In this context, this paper presents a comprehensive performance and power analysis of the entire game streaming pipeline consisting of the server/cloud side, network, and edge. Through extensive measurements with a high-end workstation mimicking the cloud end, an open-source platform (Moonlight-GameStreaming) emulating the edge device/mobile platform, and two network settings (WiFi and 5G) we conduct a detailed measurement-based study with seven representative games with different characteristics. We characterize the performance in terms of frame latency, QoS, bitrate, and energy consumption for different stages of the gaming pipeline. Our study shows that the rendering stage and the encoding stage at the cloud end are the bottlenecks to support 4K streaming. While 5G is certainly more suitable for supporting enhanced video quality with 4K streaming, it is more expensive in terms of power consumption compared to WiFi. Further, fluctuations in 5G network quality can lead to huge frame drops thus affecting QoS, which needs to be addressed by a coordinated design between the edge device and the server. Finally, the network interface and the decoder units in a mobile platform need more energy-efficient design to support high quality games at a lower cost. These observations should help in designing more cost-effective future cloud gaming platforms.  more » « less
Award ID(s):
1763681
PAR ID:
10440763
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Proceedings of the ACM on Measurement and Analysis of Computing Systems
Volume:
6
Issue:
1
ISSN:
2476-1249
Page Range / eLocation ID:
1 to 25
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Real-time interactive video streaming applications like cloud-based video games, AR, and VR require high quality video streams and extremely low end-to-end interaction delays. These requirements cause the QoE to be extremely sensitive to packet losses. Due to the inter-dependency between compressed frames, packet losses stall the video decode pipeline until the lost packets are retransmitted (resulting in stutters and higher delays), or the decoder state is reset using IDR-frames (lower video quality for given bandwidth). Prism is a hybrid predictive-reactive packet loss recovery scheme that uses a split-stream video coding technique to meet the needs of ultra-low latency video streaming applications. Prism's approach enables aggressive loss prediction, rapid loss recovery, and high video quality post-recovery, with zero overhead during normal operation - avoiding the pitfalls of existing approaches. Our evaluation on real video game footage shows that Prism reduces the penalty of using I-frames for recovery by 81%, while achieving 30% lower delay than pure retransmission-based recovery. 
    more » « less
  2. Any future mobile electronic device with which a user interacts (smartphone, hand-held game console) should not pollute our planet. Consequently, designers need to rethink how to build mobile devices with fewer components that negatively impact the environment (by replacing batteries with energy harvesting sources) while not compromising the user experience quality. This article addresses the challenges of battery-free mobile interaction and presents the first battery-free, personal mobile gaming device powered by energy harvested from gamer actions and sunlight. Our design implements a power failure resilient Nintendo Game Boy emulator that can run off-the-shelf classic Game Boy games like Tetris or Super Mario Land. Beyond a fun toy, our design represents the first battery-free system design for continuous user attention despite frequent power failures caused by intermittent energy harvesting. 
    more » « less
  3. Abstract: The COSMOS testbed provides an open-access and programmable multi-layer beyond 5G wireless platform built on an advanced optical x-haul network supporting mobile edge cloud base band processing and applications. 
    more » « less
  4. The COSMOS testbed provides an open-access and programmable multi-layer beyond 5G wireless platform built on an advanced optical x-haul network supporting mobile edge cloud base band processing and applications. OCIS codes: (060.4250) Networks; (060.2330) Fiber optics communications. 
    more » « less
  5. Abstract: The COSMOS testbed provides an open-access and programmable multi-layer beyond 5G wireless platform built on an advanced optical x-haul network supporting mobile edge cloud base band processing and applications. OCIS codes: (060.4250) Networks; (060.2330) Fiber optics communications. 
    more » « less