skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Bonding and 13C‐NMR properties of coinage metal tris(ethylene) and tris(norbornene) complexes: Evaluation of the role of relativistic effects from DFT calculations
Award ID(s):
1954456
PAR ID:
10440798
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of Computational Chemistry
Volume:
43
Issue:
27
ISSN:
0192-8651
Page Range / eLocation ID:
1848 to 1855
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Tris(2-(arylamido)-4,6-di- tert -butylphenoxo)molybdenum( vi ) complexes ( R ap) 3 Mo can be prepared either from (cycloheptatriene)Mo(CO) 3 and the N -aryliminoquinone, or from MoO 2 (acac) 2 and the aminophenol. In contrast to all other reported unconstrained transition metal tris(amidophenoxide) complexes, the molybdenum complexes show a facial geometry in the solid state. In solution, the fac isomer predominates, though a small amount of mer isomer is detectable at room temperature. At elevated temperature the two species interconvert through Rây-Dutt trigonal twists, which are faster than Bailar twists in this system, presumably because of steric effects of the N -aryl groups. Substituents on the N -aryl ring shift the fac / mer equilibrium of the complex, with more electron-withdrawing substituents generally increasing the proportion of the mer isomer. The preference for fac over mer geometry is thus suggested to be due to enhanced π bonding in the fac isomer. In contrast to analogous catecholate complexes, the tris(amidophenoxide) complexes are not Lewis acidic and are inert to nucleophilic oxidants such as amine- N -oxides. 
    more » « less
  2. Experimental and theoretical studies of magnetic anisotropy and relaxation behavior of six-coordinate tris(pivalato)-Co( ii ) and -Ni( ii ) complexes (NBu 4 )[M(piv) 3 ] (piv = pivalate, M = Co, 1 ; M = Ni, 2 ), with a coordination configuration at the intermediate between an octahedron and a trigonal prism, are reported. Direct current magnetic data and high-frequency and -field EPR spectra (HFEPR) of 1 have been modeled by a general Hamiltonian considering the first-order orbital angular momentum, while the spin Hamiltonian was used to interpret the data of 2 . Both 1 and 2 show easy-axis magnetic anisotropies, which are further supported by ab initio calculations. Alternating current (ac) magnetic susceptibilities reveal slow magnetic relaxation at an applied dc field of 0.1 T in 1 , which is characteristic of a field-induced single-ion magnet (SIM), but 2 does not exhibit single-ion magnetic properties at 1.8 K. Detailed analyses of relaxation times show a dominant contribution of a Raman process for spin relaxation in 1 . 
    more » « less
  3. The tris(aminophenol) ligand tris(4-methyl-2-(3′,5′-di- tert -butyl-2′-hydroxyphenylamino)phenyl)amine, MeClampH 6 , reacts with Ti(O i Pr) 4 to give, after exposure to air, the dark purple, neutral, diamagnetic complex (MeClamp)Ti. The compound is six-coordinate, with an uncoordinated central nitrogen (Ti–N = 2.8274(12) Å), and contains titanium( iv ) and a doubly oxidized ligand, formally a bis(iminosemiquinone)-mono(amidophenoxide). The compound is unsymmetrical in the solid state, though the three ligands are equivalent on the NMR timescale in solution. Ab initio calculations indicate that the ground state is a multiconfigurational singlet, with a low-lying multiconfigurational triplet state. Variable-temperature NMR measurements are consistent with a singlet–triplet gap of 1200 ± 70 cm −1 , in good agreement with calculations. The distortion from threefold symmetry allows a low-lying, partially populated ligand-centered π nonbonding orbital to mix with largely occupied metal–ligand π bonding orbitals. The energetic accessibility of this distortion is inversely related to the strength of the metal–ligand π bonding interaction. 
    more » « less
  4. Abstract Oxygen and hydrogen isotopes were used in this study to detect a hydraulic connection between a sinkhole lake and a karst spring. In karst areas, surface water that flows to a lake can drain through sinkholes in the lakebed to the underlying aquifer, and then flows in karst conduits and through aquifer matrix. At the study site located in northwest Florida, USA, Lake Miccosukee immediately drains into two sinkholes. Results from a dye tracing experiment indicate that lake water discharges at Natural Bridge Spring, a first‐magnitude spring 32 km downgradient from the lake. By collecting weekly water samples from the lake, the spring, and a groundwater well 10 m away from the lake during the dry period between October 2019 and January 2020, it was found that, when rainfall effects on isotopic signature in spring water are removed, increased isotope ratios of spring water can be explained by mixing of heavy‐isotope‐enriched lake water into groundwater, indicating hydraulic connection between the lake and the spring. Such a detection of hydraulic connection at the scale of tens of kilometers and for a first‐magnitude spring has not been previously reported in the literature. Based on the isotope ratio data, it was estimated that, during the study period, about 8.5% the spring discharge was the lake water that drained into the lake sinkholes. 
    more » « less
  5. null (Ed.)
    The synthesis and characterization of a series of Sn( ii ) and Sn( iv ) complexes supported by the highly electron-withdrawing dianionic perfluoropinacolate (pin F ) ligand are reported herein. Three analogs of [Sn IV (pin F ) 3 ] 2− with NEt 3 H + ( 1 ), K + ( 2 ), and {K(18C6)} + ( 3 ) counter cations and two analogs of [Sn II (pin F ) 2 ] 2− with K + ( 4 ) and {K(15C5) 2 } + ( 5 ) counter cations were prepared and characterized by standard analytical methods, single-crystal X-ray diffraction, and 119 Sn Mössbauer and NMR spectroscopies. The six-coordinate Sn IV (pin F ) complexes display 119 Sn NMR resonances and 119 Sn Mössbauer spectra similar to SnO 2 (cassiterite). In contrast, the four-coordinate Sn II (pin F ) complexes, featuring a stereochemically-active lone pair, possess low 119 Sn NMR chemical shifts and relatively high quadrupolar splitting. Furthermore, the Sn( ii ) complexes are unreactive towards both Lewis bases (pyridine, NEt 3 ) and acids (BX 3 , Et 3 NH + ). Calculations confirm that the Sn( ii ) lone pair is localized within the 5s orbital and reveal that the Sn 5p x LUMO is energetically inaccessible, which effectively abates reactivity. 
    more » « less