skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: On the border between localization and delocalization: tris(iminoxolene)titanium( iv )
The tris(aminophenol) ligand tris(4-methyl-2-(3′,5′-di- tert -butyl-2′-hydroxyphenylamino)phenyl)amine, MeClampH 6 , reacts with Ti(O i Pr) 4 to give, after exposure to air, the dark purple, neutral, diamagnetic complex (MeClamp)Ti. The compound is six-coordinate, with an uncoordinated central nitrogen (Ti–N = 2.8274(12) Å), and contains titanium( iv ) and a doubly oxidized ligand, formally a bis(iminosemiquinone)-mono(amidophenoxide). The compound is unsymmetrical in the solid state, though the three ligands are equivalent on the NMR timescale in solution. Ab initio calculations indicate that the ground state is a multiconfigurational singlet, with a low-lying multiconfigurational triplet state. Variable-temperature NMR measurements are consistent with a singlet–triplet gap of 1200 ± 70 cm −1 , in good agreement with calculations. The distortion from threefold symmetry allows a low-lying, partially populated ligand-centered π nonbonding orbital to mix with largely occupied metal–ligand π bonding orbitals. The energetic accessibility of this distortion is inversely related to the strength of the metal–ligand π bonding interaction.  more » « less
Award ID(s):
1465104 1112356
PAR ID:
10331416
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Dalton Transactions
Volume:
48
Issue:
4
ISSN:
1477-9226
Page Range / eLocation ID:
1427 to 1435
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This study presents the role of 5d orbitals in the bonding, and electronic and magnetic structure of Ce imido and oxo complexes synthesized with a tris(hydroxylaminato) [((2- t BuNO)C 6 H 4 CH 2 ) 3 N] 3− (TriNO x 3− ) ligand framework, including the reported synthesis and characterization of two new alkali metal-capped Ce oxo species. X-ray spectroscopy measurements reveal that the imido and oxo materials exhibit an intermediate valent ground state of the Ce, displaying hallmark features in the Ce L III absorption of partial f-orbital occupancy that are relatively constant for all measured compounds. These spectra feature a double peak consistent with other formal Ce( iv ) compounds. Magnetic susceptibility measurements reveal enhanced levels of temperature-independent paramagnetism (TIP). In contrast to systems with direct bonding to an aromatic ligand, no clear correlation between the level of TIP and f-orbital occupancy is observed. CASSCF calculations defy a conventional van Vleck explanation of the TIP, indicating a single-reference ground state with no low-lying triplet excited state, despite accurately predicting the measured values of f-orbital occupancy. The calculations do, however, predict strong 4f/5d hybridization. In fact, within these complexes, despite having similar f-orbital occupancies and therefore levels of 4f/5d hybridization, the d-state distributions vary depending on the bonding motif (CeO vs. CeN) of the complex, and can also be fine-tuned based on varying alkali metal cation capping species. This system therefore provides a platform for understanding the characteristic nature of Ce multiple bonds and potential impact that the associated d-state distribution may have on resulting reactivity. 
    more » « less
  2. The elusive PcFe(DABCO)2(Pc = phthalocyaninato(2-) ligand; DABCO = 1,4-diazabicyclo[2.2.2]octane) complex was prepared and characterized by UV-Vis, MCD,1H NMR, and Mössbauer spectroscopies. The X-ray crystal structure of this complex indicates the longest Fe-N(DABCO) bond distance among all known PcFeL2complexes with nitrogen donors as the axial ligands. The target compound is only stable in the presence of large access of the axial ligand and rapidly converts into the (PcFe)2O [Formula: see text]-oxo dimer even at a modest temperature. The electronic structure of the PcFe(DABCO)2complex was elucidated by DFT and TDDFT methods. The DFT calculations predicted a very small singlet-triplet gap in this compound. The femtosecond transient absorption spectroscopy is indicative of extremely fast ([Formula: see text]200 fs) deactivation of the first excited state in PcFe(DABCO)2with a lack of formation of the long-lived low-energy triplet state. 
    more » « less
  3. The bis(aminophenol) 2,2′-biphenylbis(3,5-di- tert -butyl-2-hydroxyphenylamine) (ClipH 4 ) forms trans -(Clip)Os(py) 2 upon aerobic reaction of the ligand with {( p -cymene)OsCl 2 } 2 in the presence of pyridine and triethylamine. A more oxidized species, cis -β-(Clip)Os(OCH 2 CH 2 O), is formed from reaction of the ligand with the osmium( vi ) complex OsO(OCH 2 CH 2 O) 2 , and reacts with Me 3 SiCl to give the chloro complex cis -β-(Clip)OsCl 2 . Octahedral osmium and ruthenium tris-iminoxolene complexes are formed from the chelating ligand tris(2-(3′,5′-di- tert -butyl-2′-hydroxyphenyl)amino-4-methylphenyl)amine (MeClampH 6 ) on aerobic reaction with divalent metal precursors. The complexes’ structural and electronic features are well described using a simple bonding model that emphasizes the covalency of the π bonding between the metal and iminoxolene ligands rather than attempting to dissect the parts into discrete oxidation states. Emphasizing the continuity of bonding between disparate complexes, the structural data from a variety of Os and Ru complexes show good correlations to π bond order, and the response of the intraligand bond distances to the bond order can be analyzed to illuminate the polarity of the bonding between metal and the redox-active orbital on the iminoxolenes. The osmium compounds’ π bonding orbitals are about 40% metal-centered and 60% ligand-centered, with the ruthenium compounds’ orbitals about 65% metal-centered and 35% ligand-centered. 
    more » « less
  4. Abstract The chemical stability and the low‐lying singlet and triplet excited states of BN‐n‐acenes (n = 1–7) were studied using single reference and multireference methodologies. From the calculations, descriptors such as the singlet‐triplet splitting, the natural orbital (NO) occupations and aromaticity indexes are used to provide structural and energetic analysis. The boron and nitrogen atoms form an isoelectronic pair of two carbon atoms, which was used for the complete substitution of these units in the acene series. The structural analysis confirms the effects originated from the insertion of a uniform pattern of electronegativity difference within the molecular systems. The covalent bonds tend to be strongly polarized which does not happen in the case of a carbon‐only framework. This effect leads to a charge transfer between neighbor atoms resulting in a more strengthened structure, keeping the aromaticity roughly constant along the chain. The singlet‐triplet splitting also agrees with this stability trend, maintaining a consistent gap value for all molecules. The BN‐n‐acenes molecules possess a ground state with monoconfigurational character indicating their electronic stability. The low‐lying singlet excited states have charge transfer character, which proceeds from nitrogen to boron. 
    more » « less
  5. Two heteroleptic monocationic Ir( iii ) complexes bearing 6,6′-bis(7-benzothiazolylfluoren-2-yl)-2,2′-biquinoline as the diimine ligand with different degrees of π-conjugation were synthesized and their photophysics was investigated by spectroscopic techniques and first principles calculations. These complexes possessed two intense absorption bands at 300–380 nm and 380–520 nm in toluene that are predominantly ascribed to the diimine ligand-localized 1 π,π* transition and intraligand charge transfer ( 1 ILCT)/ 1 π,π* transitions, respectively, with the latter being mixed with minor 1 MLCT (metal-to-ligand charge transfer)/ 1 LLCT (ligand-to-ligand charge transfer) configurations. Both complexes also exhibited a spin-forbidden, very weak 3 MLCT/ 3 LLCT/ 3 π,π* absorption band at 520–650 nm. The emission of these complexes appeared in the red spectral region ( λ em : 640 nm for Ir-1 and 648 nm for Ir-2 in toluene) with a quantum yield of <10% and a lifetime of hundreds of ns, which emanated from the 3 ILCT/ 3 π,π* state. The 3 ILCT/ 3 π,π* state also gave rise to broad and moderately strong transient absorption (TA) at ca. 480–800 nm. Extending the π-conjugation of the diimine ligand via inserting CC triplet bonds between the 7-benzothiazolylfluoren-2-yl substituents and 2,2′-biquinoline slightly red-shifted the absorption bands, the emission bands, and the TA bands in Ir-2 compared to those in Ir-1 that lacks the connecting CC triplet bonds in the diimine ligand. The stronger excited-state absorption with respect to the ground-state absorption at 532 nm led to strong reverse saturable absorption (RSA) for ns laser pulses at this wavelength, with the RSA of Ir-2 being slightly stronger than that of Ir-1, which correlated well with their ratios of the excited-state to ground-state absorption cross sections ( σ ex / σ 0 ). These results suggest that extending the π-conjugation of the 2,2′-biquinoline ligand via incorporating the 7-benzothiazolylfluoren-2-yl substituents retained the broad but weak ground-state absorption at 500–650 nm, meanwhile increased the triplet excited-state lifetimes, which resulted in the much stronger triplet excited-state absorption in this spectral region and strong RSA at 532 nm. Thus, these complexes are promising candidates as broadband reverse saturable absorbers. 
    more » « less