skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Principled Reinforcement Learning with Human Feedback from Pairwise or K-wise Comparisons
We provide a theoretical framework for Reinforcement Learning with Human Feedback (RLHF). We show that when the underlying true reward is linear, under both Bradley-Terry-Luce (BTL) model (pairwise comparison) and Plackett-Luce (PL) model ($$K$$-wise comparison), MLE converges under certain semi-norm for the family of linear reward. On the other hand, when training a policy based on the learned reward model, we show that MLE fails while a pessimistic MLE provides policies with good performance under certain coverage assumption. We also show that under the PL model, both the true MLE and a different MLE which splits the $$K$$-wise comparison into pairwise comparisons converge, while the true MLE is asymptotically more efficient. Our results validate the empirical success of the existing RLHF algorithms, and provide new insights for algorithm design. Our analysis can also be applied for the problem of online RLHF and inverse reinforcement learning.  more » « less
Award ID(s):
1901252 1909499
PAR ID:
10440808
Author(s) / Creator(s):
Editor(s):
Krause, Andreas and
Date Published:
Journal Name:
Proceedings of Machine Learning Research
Volume:
202
ISSN:
2640-3498
Page Range / eLocation ID:
43037-43067
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Reinforcement Learning from Human Feedback (RLHF) has achieved impressive empirical successes while relying on a small amount of human feedback. However, there is limited theoretical justification for this phenomenon. Additionally, most recent studies focus on value-based algorithms despite the recent empirical successes of policy-based algorithms. In this work, we consider an RLHF algorithm based on policy optimization (PO-RLHF). The algorithm is based on the popular Policy Cover-Policy Gradient (PC-PG) algorithm, which assumes knowledge of the reward function. In PO-RLHF, knowledge of the reward function is not assumed and the algorithm relies on trajectory-based comparison feedback to infer the reward function. We provide performance bounds for PO-RLHF with low query complexity, which provides insight into why a small amount of human feedback may be sufficient to get good performance with RLHF. A key novelty is our trajectory-level elliptical potential analysis technique used to infer reward function parameters when comparison queries rather than reward observations are used. We provide and analyze algorithms in two settings: linear and neural function approximation, PG-RLHF and NN-PG-RLHF, respectively. 
    more » « less
  2. Reinforcement Learning from Human Feedback (RLHF) is a powerful paradigm for aligning foundation models to human values and preferences. However, current RLHF techniques cannot account for the naturally occurring differences in individual human preferences across a diverse population. When these differences arise, traditional RLHF frameworks simply average over them, leading to inaccurate rewards and poor performance for individual subgroups. To address the need for pluralistic alignment, we develop a class of multimodal RLHF methods. Our proposed techniques are based on a latent variable formulation - inferring a novel user-specific latent and learning reward models and policies conditioned on this latent without additional user-specific data. While conceptually simple, we show that in practice, this reward modeling requires careful algorithmic considerations around model architecture and reward scaling. To empirically validate our proposed technique, we first show that it can provide a way to combat under- specification in simulated control problems, inferring and optimizing user-specific reward functions. Next, we conduct experiments on pluralistic language datasets representing diverse user preferences and demonstrate improved reward function accuracy. We additionally show the benefits of this probabilistic framework in terms of measuring uncertainty, and actively learning user preferences. This work enables learning from diverse populations of users with divergent preferences, an important challenge that naturally occurs in problems from robot learning to foundation model alignment. 
    more » « less
  3. null (Ed.)
    We introduce the General Pairwise Model (GPM), a general parametric framework for pairwise comparison. Under the umbrella of the exponential family, the GPM unifies many pop- ular models with discrete observations, including the Thurstone (Case V), Berry-Terry-Luce (BTL) and Ordinal Models, along with models with continuous observations, such as the Gaussian Pairwise Cardinal Model. Using information theoretic techniques, we establish minimax lower bounds with tight topological dependence. When applied as a special case to the Ordinal Model, our results uniformly improve upon previously known lower bounds and confirms one direction of a conjecture put forth by Shah et al. (2016). Performance guarantees of the MLE for a broad class of GPMs with subgaussian assumptions are given and compared against our lower bounds, showing that in many natural settings the MLE is optimal up to constants. Matching lower and upper bounds (up to constants) are achieved by the Gaussian Pairwise Cardinal Model, suggesting that our lower bounds are best-possible under the few assumptions we adopt. 
    more » « less
  4. Reinforcement Learning from Human Feedback (RLHF) has emerged as a popular paradigm for capturing human intent to alleviate the challenges of hand-crafting the reward values. Despite the increasing interest in RLHF, most works learn black box reward functions that while expressive are difficult to interpret and often require running the whole costly process of RL before we can even decipher if these frameworks are actually aligned with human preferences. We propose and evaluate a novel approach for learning expressive and interpretable reward functions from preferences using Differentiable Decision Trees (DDTs). Our experiments across several domains, including CartPole, Visual Gridworld environments and Atari games, provide evidence that the tree structure of our learned reward function is useful in determining the extent to which the reward function is aligned with human preferences. We also provide experimental evidence that not only shows that reward DDTs can often achieve competitive RL performance when compared with larger capacity deep neural network reward functions but also demonstrates the diagnostic utility of our framework in checking alignment of learned reward functions. We also observe that the choice between soft and hard (argmax) output of reward DDT reveals a tension between wanting highly shaped rewards to ensure good RL performance, while also wanting simpler, more interpretable rewards. Videos and code, are available at: https://sites.google.com/view/ddt-rlhf 
    more » « less
  5. Abstract The Bradley–Terry–Luce (BTL) model is a benchmark model for pairwise comparisons between individuals. Despite recent progress on the first-order asymptotics of several popular procedures, the understanding of uncertainty quantification in the BTL model remains largely incomplete, especially when the underlying comparison graph is sparse. In this paper, we fill this gap by focusing on two estimators that have received much recent attention: the maximum likelihood estimator (MLE) and the spectral estimator. Using a unified proof strategy, we derive sharp and uniform non-asymptotic expansions for both estimators in the sparsest possible regime (up to some poly-logarithmic factors) of the underlying comparison graph. These expansions allow us to obtain: (i) finite-dimensional central limit theorems for both estimators; (ii) construction of confidence intervals for individual ranks; (iii) optimal constant of $$\ell _2$$ estimation, which is achieved by the MLE but not by the spectral estimator. Our proof is based on a self-consistent equation of the second-order remainder vector and a novel leave-two-out analysis. 
    more » « less