skip to main content

Search for: All records

Award ID contains: 1901252

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We study the problem of online learning in a two-player decentralized cooperative Stackelberg game. In each round, the leader first takes an action, followed by the follower who takes their action after observing the leader’s move. The goal of the leader is to learn to minimize the cumulative regret based on the history of interactions. Differing from the traditional formulation of repeated Stackelberg games, we assume the follower is omniscient, with full knowledge of the true reward, and that they always best-respond to the leader’s actions. We analyze the sample complexity of regret minimization in this repeated Stackelberg game. We show that depending on the reward structure, the existence of the omniscient follower may change the sample complexity drastically, from constant to exponential, even for linear cooperative Stackelberg games. 
    more » « less
    Free, publicly-accessible full text available August 1, 2024
  2. Krause, Andreas and (Ed.)
    We provide a theoretical framework for Reinforcement Learning with Human Feedback (RLHF). We show that when the underlying true reward is linear, under both Bradley-Terry-Luce (BTL) model (pairwise comparison) and Plackett-Luce (PL) model ($K$-wise comparison), MLE converges under certain semi-norm for the family of linear reward. On the other hand, when training a policy based on the learned reward model, we show that MLE fails while a pessimistic MLE provides policies with good performance under certain coverage assumption. We also show that under the PL model, both the true MLE and a different MLE which splits the $K$-wise comparison into pairwise comparisons converge, while the true MLE is asymptotically more efficient. Our results validate the empirical success of the existing RLHF algorithms, and provide new insights for algorithm design. Our analysis can also be applied for the problem of online RLHF and inverse reinforcement learning. 
    more » « less
  3. We study the problem of solving strongly convex and smooth unconstrained optimization problems using stochastic first-order algorithms. We devise a novel algorithm, referred to as \emph{Recursive One-Over-T SGD} (\ROOTSGD), based on an easily implementable, recursive averaging of past stochastic gradients. We prove that it simultaneously achieves state-of-the-art performance in both a finite-sample, nonasymptotic sense and an asymptotic sense. On the nonasymptotic side, we prove risk bounds on the last iterate of \ROOTSGD with leading-order terms that match the optimal statistical risk with a unity pre-factor, along with a higher-order term that scales at the sharp rate of O(n−3/2) under the Lipschitz condition on the Hessian matrix. On the asymptotic side, we show that when a mild, one-point Hessian continuity condition is imposed, the rescaled last iterate of (multi-epoch) \ROOTSGD converges asymptotically to a Gaussian limit with the Cram\'{e}r-Rao optimal asymptotic covariance, for a broad range of step-size choices. 
    more » « less
  4. Many goal-reaching reinforcement learning (RL) tasks have empirically verified that rewarding the agent on subgoals improves convergence speed and practical performance. We attempt to provide a theoretical framework to quantify the computational benefits of rewarding the completion of subgoals, in terms of the number of synchronous value iterations. In particular, we consider subgoals as one-way intermediate states, which can only be visited once per episode and propose two settings that consider these one-way intermediate states: the one-way single-path (OWSP) and the one-way multi-path (OWMP) settings. In both OWSP and OWMP settings, we demonstrate that adding intermediate rewards to subgoals is more computationally efficient than only rewarding the agent once it completes the goal of reaching a terminal state. We also reveal a trade-off between computational complexity and the pursuit of the shortest path in the OWMP setting: adding intermediate rewards significantly reduces the computational complexity of reaching the goal but the agent may not find the shortest path, whereas with sparse terminal rewards, the agent finds the shortest path at a significantly higher computational cost. We also corroborate our theoretical results with extensive experiments on the MiniGrid environments using Q-learning and some popular deep RL algorithms. 
    more » « less