skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Multiple shapes from a single nematic elastomer sheet activated via patterned illumination
Abstract Liquid crystal elastomers (LCEs) undergo a large uniaxial contraction upon thermal or optical stimulation. LCE sheets are often fabricated with a spatially patterned direction of contraction, which can sculpt the sheet into a Gauss-curved surface. Here, we instead consider LCE sheets subject to patterned stimulation intensity, leading to a control of contraction strength. We show such patterns may also sculpt a complex surface, but with the advantage that arbitrarily many surfaces may be achieved sequentially in the same sample, thus breaking the link between microstructure and shape. We first consider a monodomain LCE in which some regions are actuated and others are not. We discuss how to join actuated and unactuated regions compatibly, and use this design rule to generate patterns for cones, anti-cones, arrays of cones and a rolling bi-strip. We validate the patterns numerically via elastic shell simulations and demonstrate them experimentally via patterned photo-chemical actuation. Secondly, we consider an LCE disk with an azimuthal director profile actuated by a radially varying stimulus. We show, theoretically and numerically, how to design a stimulation profile to sculpt any surface of revolution. Such re-configurable actuation offers enticing possibilities for haptics, robotics and locomotion.  more » « less
Award ID(s):
1921842
PAR ID:
10440858
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Europhysics Letters
Volume:
140
Issue:
3
ISSN:
0295-5075
Page Range / eLocation ID:
36003
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Formation of desired three-dimensional (3D) shapes from flat thin sheets with programmed non-uniform deformation profiles is an effective strategy to create functional 3D structures. Liquid crystal elastomers (LCEs) are of particular use in programmable shape morphing due to their ability to undergo large, reversible, and anisotropic deformation in response to a stimulus. Here we consider a rectangular monodomain LCE thin sheet divided into one high- and one low-temperature strip, which we dub a ‘bistrip’. Upon activation, a discontinuously patterned, anisotropic in-plane stretch profile is generated, and induces buckling of the bistrip into a rolled shape with a transitional bottle neck. Based on the non-Euclidean plate theory, we derive an analytical model to quantitatively capture the formation of the rolled shapes from a flat bistrip with finite thickness by minimizing the total elastic energy involving both stretching and bending energies. Using this analytical model, we identify the critical thickness at which the transition from the unbuckled to buckled configuration occurs. We further study the influence of the anisotropy of the stretch profile on the rolled shapes by first converting prescribed metric tensors with different anisotropy to a unified metric tensor embedded in a bistrip of modified geometry, and then investigating the effect of each parameter in this unified metric tensor on the rolled shapes. Our analysis sheds light on designing shape morphing of LCE thin sheets, and provides quantitative predictions on the 3D shapes that programmed LCE sheets can form upon activation for various applications. 
    more » « less
  2. Liquid crystal elastomers (LCEs) hold a major promise as a versatile material platform for smart soft coatings since their orientational order can be predesigned to program a desired dynamic profile. In this work, we introduce temperature-responsive dynamic coatings based on LCEs with arrays of singular defects-disclinations that run parallel to the surface. The disclinations form in response to antagonistic patterns of the molecular orientation at the top and bottom surfaces, imposed by the plasmonic mask photoalignment. Upon heating, an initially flat LCE coating develops linear microchannels located above each disclination. The stimulus that causes a non-flat profile of LCE coatings upon heating is the activation force induced by the gradients of molecular orientation around disclinations. To describe the formation of microchannels and their thermal response, we adopt a Frank–Oseen model of disclinations in a patterned director field and propose a linear elasticity theory to connect the complex spatially varying molecular orientation to the displacements of the LCE. The thermo-responsive surface profiles predicted by the theory and by the finite element modeling are in good agreement with the experimental data; in particular, higher gradients of molecular orientation produce a stronger modulation of the coating profile. The elastic theory and the finite element simulations allow us to estimate the material parameter that characterizes the elastomer coating's response to the thermal activation. The disclination-containing LCEs show potential as soft dynamic coatings with a predesigned responsive surface profile. 
    more » « less
  3. Abstract Liquid crystal elastomers (LCEs) marry the large deformation response of a cross-linked polymer network with the nematic order of liquid crystals pendent to the network. Of particular interest is the actuation of LCE sheets where the nematic order, modeled by a unit vector called the director, is specified heterogeneously in the plane of the sheet. Heating such a sheet leads to a large spontaneous deformation, coupled to the director design through a metric constraint that is now well-established by the literature. Here we go beyond the metric constraint and identify the full plate theory that underlies this phenomenon. Starting from a widely used bulk model for LCEs, we derive a plate theory for the pure bending deformations of patterned LCE sheets in the limit that the sheet thickness tends to zero using the framework of$$\Gamma $$ Γ -convergence. Specifically, after dividing the bulk energy by the cube of the thickness to set a bending scale, we show that all limiting midplane deformations with bounded energy at this scale satisfy the aforementioned metric constraint. We then identify the energy of our plate theory as an ansatz-free lower bound of the limit of the scaled bulk energy, and construct a recovery sequence that achieves this plate energy for all smooth enough midplane deformations. We conclude by applying our plate theory to a variety of examples. 
    more » « less
  4. Abstract Liquid crystal elastomer (LCE) is a type of soft active material that generates large and reversible spontaneous deformations upon temperature changes, facilitating various environmentally responsive smart applications. Despite their success, most existing LCE metamaterials are designed in a forward fashion based on intuition and feature regular material patterns, which may hinder the reach of LCE’s full potential in producing complex and desired functionalities. Here, we develop a computational inverse design framework for discovering diverse sophisticated temperature-activated and -interactive nonlinear behaviors for LCE metamaterials in a fully controllable fashion. We generate intelligent LCE metamaterials with a wide range of switchable functionalities upon temperature changes. By sensing the environment, these metamaterials can realize maximized spontaneous area expansion/contraction, precisely programmable enclosed opening size change, and temperature-switchable nonlinear stress–strain relations and deformation modes. The optimized unit cells feature irregular LCE patterns and form complex and highly nonlinear mechanisms. The inverse design computational framework, optimized material patterns, and revealed underlying mechanisms fundamentally advance the design capacity of LCE metamaterials, benefiting environment-aware and -adaptive smart materials. 
    more » « less
  5. Continuous and controlled shape morphing is essential for soft machines to conform, grasp, and move while interacting safely with their surroundings. Shape morphing can be achieved with two-dimensional (2D) sheets that reconfigure into target 3D geometries, for example, using stimuli-responsive materials. However, most existing solutions lack the ability to reprogram their shape, face limitations on attainable geometries, or have insufficient mechanical stiffness to manipulate objects. Here, we develop a soft, robotic surface that allows for large, reprogrammable, and pliable shape morphing into smooth 3D geometries. The robotic surface consists of a layered design composed of two active networks serving as artificial muscles, one passive network serving as a skeleton, and cover scales serving as an artificial skin. The active network consists of a grid of strips made of heat-responsive liquid crystal elastomers (LCEs) containing stretchable heating coils. The magnitude and speed of contraction of the LCEs can be controlled by varying the input electric currents. The 1D contraction of the LCE strips activates in-plane and out-of-plane deformations; these deformations are both necessary to transform a flat surface into arbitrary 3D geometries. We characterize the fundamental deformation response of the layers and derive a control scheme for actuation. We demonstrate that the robotic surface provides sufficient mechanical stiffness and stability to manipulate other objects. This approach has potential to address the needs of a range of applications beyond shape changes, such as human-robot interactions and reconfigurable electronics. 
    more » « less