skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Review of Postmortem Protein Oxidation in Skeletal Muscle and the Role of the Peroxiredoxin Family of Endogenous Antioxidants
The development of fresh meat quality is dictated by biochemical changes during the perimortem and postmortem period. Lipid and protein oxidation in postmortem skeletal muscle and meat products is detrimental to product quality. The mechanisms that influence lipid and protein oxidation in fresh meat remain unelucidated. Peroxiredoxins are thiol-specific antioxidant proteins that are highly reactive and abundant and may be involved in limiting oxidation early postmortem. This review aims to provide a background on oxidation in skeletal muscle, peroxiredoxins, a summary of proteomic experiments associating peroxiredoxins and meat quality, and the importance of context from proteomic methods and results. Additional controlled experiments considering the cellular conditions of postmortem skeletal muscle are necessary to further understand the contribution of peroxiredoxins to fresh meat quality development.  more » « less
Award ID(s):
1828942
PAR ID:
10440911
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Meat and Muscle Biology
Volume:
6
Issue:
3
ISSN:
2575-985X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Brown adipose tissue (BAT) plays critical thermogenic, metabolic and endocrine roles in mammals, and aberrant BAT function is associated with metabolic disorders including obesity and diabetes. The major BAT depots are clustered at the neck and forelimb levels, and arise largely within the dermomyotome of somites, from a common progenitor with skeletal muscle. However, many aspects of BAT embryonic development are not well understood. Hoxa5 patterns other tissues at the cervical and brachial levels, including skeletal, neural and respiratory structures. Here, we show that Hoxa5 also positively regulates BAT development, while negatively regulating formation of epaxial skeletal muscle. HOXA5 protein is expressed in embryonic preadipocytes and adipocytes as early as embryonic day 12.5. Hoxa5 null mutant embryos and rare, surviving adults show subtly reduced iBAT and sBAT formation, as well as aberrant marker expression, lower adipocyte density and altered lipid droplet morphology. Conversely, the epaxial muscles that arise from a common dermomyotome progenitor are expanded in Hoxa5 mutants. Conditional deletion of Hoxa5 with Myf5/Cre can reproduce both BAT and epaxial muscle phenotypes, indicating that HOXA5 is necessary within Myf5- positive cells for proper BAT and epaxial muscle development. However, recombinase-based lineage tracing shows that Hoxa5 does not act cell-autonomously to repress skeletal muscle fate. Interestingly, Hoxa5 -dependent regulation of adipose-associated transcripts is conserved in lung and diaphragm, suggesting a shared molecular role for Hoxa5 in multiple tissues. Together, these findings establish a role for Hoxa5 in embryonic BAT development. 
    more » « less
  2. Abstract Unpredictable variation in quality, including fresh pork water-holding capacity, remains challenging to pork processors and customers. Defining the diverse factors that influence fresh pork water-holding capacity is necessary to make progress in refining pork quality prediction methods. The objective was to utilize liquid chromatography and mass spectrometry coupled with tandem mass tag (TMT) multiplexing to evaluate the sarcoplasmic proteome of aged pork loins classified by purge loss. Fresh commercial pork loins were collected, aged 12 or 14 d postmortem, and pork quality and sensory attributes were evaluated. Chops were classified into Low (N = 27, average purge = 0.33%), Intermediate (N = 27, average purge = 0.72%), or High (N = 27, average purge = 1.19%) chop purge groups. Proteins soluble in a low-ionic strength buffer were extracted, digested with trypsin, labeled with 11-plex isobaric TMT reagents, and detected using a Q-Exactive Mass Spectrometer. Between the Low and High purge groups, 40 proteins were differentially (P < 0.05) abundant. The Low purge group had a greater abundance of proteins classified as structural and contractile, sarcoplasmic reticulum and calcium regulating, chaperone, and citric acid cycle enzymes than the High purge group. The presence of myofibrillar proteins in the aged sarcoplasmic proteome is likely due to postmortem degradation. These observations support our hypothesis that pork chops with low purge have a greater abundance of structural proteins in the soluble protein fraction. Together, these and other proteins in the aged sarcoplasmic proteome may be biomarkers of pork water-holding capacity. Additional research should establish the utility of these proteins as biomarkers early postmortem and over subsequent aging periods. 
    more » « less
  3. Abstract Fresh pork tenderness contributes to consumer satisfaction with the eating experience. Postmortem proteolysis of proteins within and between myofibrils has been closely linked with pork tenderness development. A clear understanding of the molecular features associated with pork tenderness development will provide additional targets and open the door to new solutions to improve and make pork tenderness development more consistent. Therefore, the objective was to utilize liquid chromatography and mass spectrometry with tandem mass tag (TMT) multiplexing to evaluate myofibrillar sub-proteome differences between pork chops of different instrumental star probe values. Pork loins (N = 120) were collected from a commercial harvest facility at 24 h postmortem. Quality and sensory attributes were evaluated at 24 h postmortem and after ~2 weeks of postmortem aging. Pork chops were grouped into 4 groups based on instrumental star probe value (group A,x¯ = 4.23 kg, 3.43 to 4.55 kg; group B,x¯ = 4.79 kg, 4.66 to 5.00 kg; group C,x¯ = 5.43 kg, 5.20 to 5.64 kg; group D,x¯ = 6.21 kg, 5.70 to 7.41 kg; n = 25 per group). Myofibrillar proteins from the samples aged ~2 wk were fractionated, washed, and solubilized in 8.3 M urea, 2 M thiourea, and 1% dithiothreitol. Proteins were digested with trypsin, labeled with 11-plex isobaric TMT reagents, and identified and quantified using a Q-Exactive Mass Spectrometer. Between groups A and D, 54 protein groups were differentially abundant (adjusted P < 0.05). Group A had a greater abundance of proteins related to the thick and thin filament and a lesser abundance of Z-line-associated proteins and metabolic enzymes than group D chops. These data highlight that distinct myofibrillar sub-proteomes are associated with pork chops of different tenderness values. Future research should evaluate changes immediately and earlier postmortem to further elucidate myofibrillar sub-proteome differences over the postmortem aging period. 
    more » « less
  4. Mitochondria play a central role in muscle metabolism and function. A unique family of iron–sulfur proteins, termed CDGSH Iron Sulfur Domain-containing (CISD/NEET) proteins, support mitochondrial function in skeletal muscles. The abundance of these proteins declines during aging leading to muscle degeneration. Although the function of the outer mitochondrial CISD/NEET proteins, CISD1/mitoNEET and CISD2/NAF-1, has been defined in skeletal muscle cells, the role of the inner mitochondrial CISD protein, CISD3/MiNT, is currently unknown. Here, we show that CISD3 deficiency in mice results in muscle atrophy that shares proteomic features with Duchenne muscular dystrophy. We further reveal that CISD3 deficiency impairs the function and structure of skeletal muscles, as well as their mitochondria, and that CISD3 interacts with, and donates its [2Fe-2S] clusters to, complex I respiratory chain subunit NADH Ubiquinone Oxidoreductase Core Subunit V2 (NDUFV2). Using coevolutionary and structural computational tools, we model a CISD3–NDUFV2 complex with proximal coevolving residue interactions conducive of [2Fe-2S] cluster transfer reactions, placing the clusters of the two proteins 10 to 16 Å apart. Taken together, our findings reveal that CISD3/MiNT is important for supporting the biogenesis and function of complex I, essential for muscle maintenance and function. Interventions that target CISD3 could therefore impact different muscle degeneration syndromes, aging, and related conditions. 
    more » « less
  5. null (Ed.)
    Abstract Skeletal muscle is a tissue that is directly involved in the progression and persistence of type 2 diabetes (T2D), a disease that is becoming increasingly common. Gaining better insight into the mechanisms that are affecting skeletal muscle dysfunction in the context of T2D has the potential to lead to novel treatments for a large number of patients. Through its ability to emulate skeletal muscle architecture while also incorporating aspects of disease, tissue-engineered skeletal muscle (TE-SkM) has the potential to provide a means for rapid high-throughput discovery of therapies to treat skeletal muscle dysfunction, to include that which occurs with T2D. Muscle precursor cells isolated from lean or obese male Zucker diabetic fatty rats were used to generate TE-SkM constructs. Some constructs were treated with adipogenic induction media to accentuate the presence of adipocytes that is a characteristic feature of T2D skeletal muscle. The maturity (compaction and creatine kinase activity), mechanical integrity (Young's modulus), organization (myotube orientation), and metabolic capacity (insulin-stimulated glucose uptake) were all reduced by diabetes. Treating constructs with adipogenic induction media increased the quantity of lipid within the diabetic TE-SkM constructs, and caused changes in construct compaction, cell orientation, and insulin-stimulated glucose uptake in both lean and diabetic samples. Collectively, the findings herein suggest that the recapitulation of structural and metabolic aspects of T2D can be accomplished by engineering skeletal muscle in vitro. Impact Statement The tissue engineering of skeletal muscle to model disease and injury has great promise to provide a tool to develop and/or improve therapeutic approaches for improved health care. A tissue-engineered skeletal muscle model of one of the most common and debilitating diseases, type 2 diabetes, has been developed in vitro as evidenced by the structural and metabolic alterations that are consistent with the disease phenotype in vivo. 
    more » « less