This study investigates the diurnal cycle of rainfall, convection, and precipitation features (PFs) over the Maritime Continent (MC). The study uses Tropical Rainfall Measuring Missions (TRMM) Multi‐satellite Precipitation Analysis (TMPA; product 3b42), TRMM PFs, and convective classifications from the International Satellite Cloud Climatology Project (ISCCP) data. Together, these satellites dataset paint a comprehensive picture of the diurnal cycle of rainfall and convection over the MC consistent with past research. Isolated convection initiates around midday over the higher terrain of the large islands (Java, Borneo, and Papua New Guinea). The convection becomes more organized through the afternoon and evening, leading to peak rainfall over the islands around 1800–2100 local standard time (LST). Over the next few hours, some of that rainfall transitions to stratiform rain over land. The convection then propagates offshore overnight with rainfall peaking along the coast around 0300–0600 LST and then over ocean around 0600–0900 LST. ISCCP data suggests that the overnight and early morning convection is more associated with isolated convective cells than the remnants of mesoscale convective systems. The coastal and oceanic diurnal ranges also seem to be larger in stratiform rainfall, in contrast to land where convective rainfall dominates. Seasonally the diurnal variation of rainfall, convection, and PFs over the region have greater amplitude during DJF (December, January, and February) than JJA (June, July, and August). Given the MC's critical role in the global climate, examining variations in these cycles with respect to the Madden–Julian Oscillation and equatorial waves may ultimately lead to improved subseasonal weather forecasts.
- Award ID(s):
- 1850661
- PAR ID:
- 10440932
- Date Published:
- Journal Name:
- Journal of Hydrometeorology
- ISSN:
- 1525-755X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract The Congo basin in central equatorial Africa is home to some of the most intense convection in the global tropics. Mesoscale convective systems (MCSs) provide much of the annual rainfall over this region during the March–April–May (MAM) and September–October–November (SON) rainy seasons. Features of these systems are essential to rainfall variability in this region and greatly impact human health, agriculture, livestock, and drought monitoring. Knowledge of variability is hindered by the lack of in‐situ observations and meteorological stations. The present study identifies and tracks MCSs for the 33‐year period 1983–2015 for MAM and SON. MCS and environmental parameters are calculated for the rainy seasons using satellite and reanalysis data. Spatial distributions of MCS parameters and diurnal cycles for select MCS parameters are compared to prior research. Statistical significance testing is performed to determine if there are meaningful differences between the seasons. Seasonal differences are briefly discussed. 650 hPa relative vorticity patterns suggest localized terrain effects may play a role near a local maximum in MCS initiation frequency in the lee of the Great Rift Valley. Spatial distributions of 33‐year MCS counts, trajectories, speeds, sizes, maximum intensities, and durations, based on initiation locations, agree well with prior research. Differences between seasons are statistically significant and variable and latitude dependent. There is high interannual variability among all MCS and environmental parameters.
-
Abstract This article examined rainfall enhancement over Lake Victoria. Estimates of over-lake rainfall were compared with rainfall in the surrounding lake catchment. Four satellite products were initially tested against estimates based on gauges or water balance models. These included TRMM 3B43, IMERG V06 Final Run (IMERG-F), CHIRPS2, and PERSIANN-CDR. There was agreement among the satellite products for catchment rainfall but a large disparity among them for over-lake rainfall. IMERG-F was clearly an outlier, exceeding the estimate from TRMM 3B43 by 36%. The overestimation by IMERG-F was likely related to passive microwave assessments of strong convection, such as prevails over Lake Victoria. Overall, TRMM 3B43 showed the best agreement with the "ground truth" and was used in further analyses. Over-lake rainfall was found to be enhanced compared to catchment rainfall in all months. During the March-to-May long rains the enhancement varied between 40% and 50%. During the October-to-December short rains the enhancement varied between 33% and 44%. Even during the two dry seasons the enhancement was at least 20% and over 50% in some months. While the magnitude of enhancement varied from month to month, the seasonal cycle was essentially the same for over-lake and catchment rainfall, suggesting that the dominant influence on over-lake rainfall is the large-scale environment. The association with Mesoscale Convective Systems (MCSs) was also evaluated. The similarity of the spatial patterns of rainfall and MCS count each month suggested that these produced a major share of rainfall over the lake. Similarity in interannual variability further supported this conclusion.more » « less
-
Abstract The purpose of this article is to determine the meteorological factors controlling the lake-effect rains over Lake Victoria. Winds, divergence, vertical motion, specific humidity, Convective Available Potential Energy (CAPE), and Convective Inhibition (CIN) were examined. The local wind regime and associated divergence/convergence are the major factors determining the diurnal cycle of rainfall over the lake and catchment. The major contrast between over-lake rainfall in the wet- and dry-season months is the vertical profile of omega. This appears to be a result of seasonal contrasts in CAPE, CIN, and specific humidity, parameters that play a critical role in vertical motion and convective development.more » « less
-
Abstract A 6.5-month, convection-permitting simulation is conducted over Argentina covering the Remote Sensing of Electrification, Lightning, And Mesoscale/Microscale Processes with Adaptive Ground Observations and Clouds, Aerosols, and Complex Terrain Interactions (RELAMPAGO-CACTI) field campaign and is compared with observations to evaluate mesoscale convective system (MCS) growth prediction. Observed and simulated MCSs are consistently identified, tracked, and separated into growth, mature, and decay stages using top-of-the-atmosphere infrared brightness temperature and surface rainfall. Simulated MCS number, lifetime, seasonal and diurnal cycles, and various cloud-shield characteristics including growth rate are similar to those observed. However, the simulation produces smaller rainfall areas, greater proportions of heavy rainfall, and faster system propagations. Rainfall area is significantly underestimated for long-lived MCSs but not for shorter-lived MCSs, and rain rates are always overestimated. These differences result from a combination of model and satellite retrieval biases, in which simulated MCS rain rates are shifted from light to heavy, while satellite-retrieved rainfall is too frequent relative to rain gauge estimates. However, the simulation reproduces satellite-retrieved MCS cloud-shield evolution well, supporting its usage to examine environmental controls on MCS growth. MCS initiation locations are associated with removal of convective inhibition more than maximized low-level moisture convergence or instability. Rapid growth is associated with a stronger upper-level jet (ULJ) and a deeper northwestern Argentinean low that causes a stronger northerly low-level jet (LLJ), increasing heat and moisture fluxes, low-level vertical wind shear, baroclinicity, and instability. Sustained growth corresponds to similar LLJ, baroclinicity, and instability conditions but is less sensitive to the ULJ, large-scale vertical motion, or low-level shear. Growth sustenance controls MCS maximum extent more than growth rate.more » « less