skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Conservative and Robust Compact Finite Difference Approach for Simulations of Dense Gas Flows
Supercritical ŕuids have a number of thermodynamic and chemical properties which make them attractive for use in environmentally friendly technologies. However, though the thermodynamic properties of supercritical ŕuids have been studied comprehensively, the dynamics of supercritical and transcritical ŕuid ŕows are less well explored and understood. Studying the behavior of such ŕuid ŕows through high-quality computational investigations could provide crucial insights useful for designing and controlling ŕow systems operating in supercritical and transcritical regimes. An accurate and robust computational framework is a prerequisite to conducting high-quality computational investigations. This work extends a high-ődelity computational framework for ideal gas ŕows by including complex thermodynamic models and realistic transport models near the critical point of the ŕuid where abrupt changes in density and transport properties occur with small temperature or pressure ŕuctuations. The spatial discretization is based on compact őnite difference methods that achieve high-order grid convergence and the high spectral resolution needed to resolve small scale ŕow structures. The computational approach achieves robustness by reducing the aliasing error and improving the spectral resolution of the viscous ŕuxes at high wavenumbers. No non-conservative correction or őltering is needed to maintain robustness for shock-free ŕows if physical or physics-based model dissipation is included. The framework is also compatible with applications of shock capturing schemes and approximated Riemann solvers and supports simulations on curvilinear meshes. Two problems involving compressible free-shear ŕows (temporal mixing layer) and wall-bounded ŕows (zero-pressure gradient ŕat plate boundary layer with a cold isothermal wall) are studied for dense gases to demonstrate the robustness and versatility of the proposed numerical formulation.  more » « less
Award ID(s):
2103509
PAR ID:
10441010
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
AIAA paper
ISSN:
0146-3705
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. To achieve high power density and thermodynamic cycle efficiency, the working pressures of liquid-propellant rocket engines, diesel engines, and gas turbines (based on deflagration or detonation) are continuously increasing, which could reach or go beyond the thermodynamic critical pressure of the liquid propellant. For this reason, the studies of trans- and super-critical injection are getting more and more attention. However, the simulation of transcritical phase change is still a challenging topic. The phase boundary, especially near the mixture critical point, needs to be accurately determined to investigate the multicomponent effects on transcritical injection and atomization. This work used our previously developed thermodynamic model based on the vapor-liquid equilibrium (VLE) theory, which can predict the phase separation near the mixture critical point. An \textit{in situ} adaptive tabulation (ISAT) method was developed to accelerate the computationally expensive multicomponent VLE computation such that it can be cheap enough for CFD. The new thermodynamic model was integrated into OpenFOAM to develop a VLE-based CFD solver. In this work, shock-droplet interaction and two-phase mixing simulations are conducted using our new VLE-based CFD solver. The shock-droplet interaction simulation results capture the thermodynamic condition of the surface entering the supercritical state after shock passes through. The atomization of droplets could be triggered by vorticity formed at the droplets' surface. 2D temporal mixing layer simulations show the evolution of the transcritical mixing layer and capture the phase split effect at the mixing layer. 
    more » « less
  2. Vapor-liquid equilibrium (VLE) is a family of first-principled thermodynamic models for transcritical multiphase flows, which can accurately capture the phase transitions at high-pressure conditions that are difficult to deal with using other models. However, VLE-based computational fluid dynamics (CFD) simulation is computationally very expensive for multi-component systems, which severely limits its applications to real-world systems. In this work, we developed a new ISAT-VLE method based on the in situ adaptive tabulation (ISAT) method to improve the computational efficiency of VLE-based CFD simulation with reduced memory usage. We developed several ISAT-VLE solvers for both fully conservative (FC) and double flux (DF) schemes. New methods are proposed to delete redundant records in the ISAT-VLE table and the ISAT-VLE method performance is further improved. To improve the convergence of the VLE solvers, a modified initial guess for equilibrium constant is also introduced. Simulations of high-pressure transcritical two-phase temporal mixing layers and shock-droplet interaction were conducted using the ISAT-VLE CFD solvers. The simulation results show that the new method obtains a speed-up factor approximately from 10 to 60 and the ISAT errors can be controlled within 1%. The shock-droplet interaction results show that the DF scheme can achieve a higher speed-up factor than the FC scheme. The two sets of simulations exhibit the phase separation at high-pressure conditions. It was found that even at supercritical pressures with respect to each component, the droplet surface could still be in a subcritical two-phase state, because the mixture critical pressure is often significantly higher than each component and hence triggers phase separation. In addition, a shock wave could partially or completely convert the droplet surface from a subcritical two-phase state to a single-phase state by raising temperature and pressure. 
    more » « less
  3. The requirement of high power outputs and high efficiencies of combustion engines such as rocket engines, diesel engines, and gas turbines has resulted in the incremented of the system pressure close to the thermodynamically critical point. This increase in pressure often leads to the fluids becoming either transcritical or supercritical in state. This has led to increased interest in both the multi-component phase change phenomena as well as their chemical reactions. In this work, an artificial neural network (ANN) aided VLE model is coupled with a fully compressible computational fluid dynamics (CFD) solver to simulate the transcritical processes occurring in high-pressure liquid-fueled propulsion systems. The ANN is trained on Python using the TensorFlow library, optimized for inference (i.e., prediction) using ONNX Run-time (a cross-platform inference and training machine-learning accelerator), and coupled with a C++ based fully compressible CFD solver. This plug-and-play model/methodology can be used to convert any fully compressible and conservative CFD solver to simulate transcritical processes using only open-source packages, without the need of in-house VLE-based CFD development. The solver is then used to study high-pressure shock-droplet interaction in both two- and four-component systems where qualitative and quantitative agreement is shown with results based on both direct evaluation and the state-of-the-art in-situ adaptive tabulation (ISAT) method. The ANN model is faster than the direct evaluation method and the ISAT model by 4 times for the four-component shock-droplet interaction. The ANN model also shows implicit load balancing as long as the MPI decomposition is performed uniformly amongst the number of cores chosen, as the inference time for ANN predict does not change with the change in thermodynamic state, unlike traditional VLE solvers. Regarding the parallel scalability of this model, good strong scaling characteristics with number of processors is also observed. 
    more » « less
  4. To achieve high performance, the working pressure of liquid-fueled rocket engines, diesel engines, and gas turbines (based on deflagration or detonation) is continuously increasing, which could reach the thermodynamic critical pressure of the liquid fuel. For this reason, the studies of trans- and super-critical injection are getting more attention. However, most of the multiphase researches were mainly concentrated on single- or two-component systems, which cannot capture the multicomponent phase change in real high-pressure engines and gas turbines. The phase boundary, especially near the critical points, needs to be accurately determined to investigate the multicomponent effects in transcritical flow. This work used our previously developed thermodynamic model based on the vapor-liquid equilibrium (VLE) theory, which can predict the phase separation near the critical points. An in situ adaptive tabulation (ISAT) method was developed to accelerate the computation of the VLE model such that the expensive multicomponent VLE calculation can be cheap enough for CFD. The new thermodynamic model was integrated into OpenFOAM to build a VLE-based CFD solver. In this work, simulations are conducted using our new VLE-based CFD solver to reveal the phase change effects in transcritical flow. Specifically, shock-droplet interaction are investigated to reveal the shock-driven high pressure phase change. 
    more » « less
  5. The spray characteristics of fuels when sprayed under superheated and elevated fuel pressure are markedly different than traditional fuel injection sprays. Studying fuel sprays under these conditions will help us understand the complex behaviors that may provide us with information to optimize future applications of certain technologies like supercritical spray combustion. In this work optical diagnostics are used to study the behavior of Jet A-1 under subcritical, transcritical, and supercritical sprays into open air test chambers. The experimental setup includes a high-pressure air driven pump to create the required high fuel pressure and a special heated injector to increase the temperature of the fuel inside the injector before injection to the required temperatures. Optical techniques like Schlieren and backlit shadowgraph are used to capture and study the sprays from a single hole high pressure diesel injector. A combination of 4 different temperatures and 4 different pressures are tested and the resultant images are processed to obtain quantitative measurements such as spray penetrations, spray cone angle, and spray optical density for each case. Moreover, the spray plume structure transition with changing parameters from subcritical, transcritical, and supercritical states for the fuel are also studied. The results show that with the fuel being in a transcritical state before injection there is a measurable variation in the spray cone formation and penetration for any fixed pressure. At this state the spray cone shows a bimodal spray angle distribution with increasing penetration. An increase in vapor turbulence is also observed indicating the occurrence of flash boiling of the fuel. With the fuels pushed to a supercritical state, the spray shows a thinner spray jet near the injector with a reduced overall penetration and reduced optical density near nozzle. The transition between the three different states as shown in this study gives us an interesting relationship between the spray penetration, spray cone angle and the spray optical density. This can be used as an indicator in understanding spray atomization of the fuels under supercritical spray conditions. 
    more » « less