Abstract MotivationVolumetric 3D object analyses are being applied in research fields such as structural bioinformatics, biophysics, and structural biology, with potential integration of artificial intelligence/machine learning (AI/ML) techniques. One such method, 3D Zernike moments, has proven valuable in analyzing protein structures (e.g., protein fold classification, protein–protein interaction analysis, and molecular dynamics simulations). Their compactness and efficiency make them amenable to large-scale analyses. Established methods for deriving 3D Zernike moments, however, can be inefficient, particularly when higher order terms are required, hindering broader applications. As the volume of experimental and computationally-predicted protein structure information continues to increase, structural biology has become a “big data” science requiring more efficient analysis tools. ResultsThis application note presents a Python-based software package, ZMPY3D, to accelerate computation of 3D Zernike moments by vectorizing the mathematical formulae and using graphical processing units (GPUs). The package offers popular GPU-supported libraries such as CuPy and TensorFlow together with NumPy implementations, aiming to improve computational efficiency, adaptability, and flexibility in future algorithm development. The ZMPY3D package can be installed via PyPI, and the source code is available from GitHub. Volumetric-based protein 3D structural similarity scores and transform matrix of superposition functionalities have both been implemented, creating a powerful computational tool that will allow the research community to amalgamate 3D Zernike moments with existing AI/ML tools, to advance research and education in protein structure bioinformatics. Availability and implementationZMPY3D, implemented in Python, is available on GitHub (https://github.com/tawssie/ZMPY3D) and PyPI, released under the GPL License.
more »
« less
Artificial intelligence-aided protein engineering: from topological data analysis to deep protein language models
Abstract Protein engineering is an emerging field in biotechnology that has the potential to revolutionize various areas, such as antibody design, drug discovery, food security, ecology, and more. However, the mutational space involved is too vast to be handled through experimental means alone. Leveraging accumulative protein databases, machine learning (ML) models, particularly those based on natural language processing (NLP), have considerably expedited protein engineering. Moreover, advances in topological data analysis (TDA) and artificial intelligence-based protein structure prediction, such as AlphaFold2, have made more powerful structure-based ML-assisted protein engineering strategies possible. This review aims to offer a comprehensive, systematic, and indispensable set of methodological components, including TDA and NLP, for protein engineering and to facilitate their future development.
more »
« less
- PAR ID:
- 10441080
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Briefings in Bioinformatics
- Volume:
- 24
- Issue:
- 5
- ISSN:
- 1467-5463
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Protein language models trained on evolutionary data have emerged as powerful tools for predictive problems involving protein sequence, structure and function. However, these models overlook decades of research into biophysical factors governing protein function. We propose mutational effect transfer learning (METL), a protein language model framework that unites advanced machine learning and biophysical modeling. Using the METL framework, we pretrain transformer-based neural networks on biophysical simulation data to capture fundamental relationships between protein sequence, structure and energetics. We fine-tune METL on experimental sequence–function data to harness these biophysical signals and apply them when predicting protein properties like thermostability, catalytic activity and fluorescence. METL excels in challenging protein engineering tasks like generalizing from small training sets and position extrapolation, although existing methods that train on evolutionary signals remain powerful for many types of experimental assays. We demonstrate METL’s ability to design functional green fluorescent protein variants when trained on only 64 examples, showcasing the potential of biophysics-based protein language models for protein engineering.more » « less
-
Abstract MotivationProtein language models based on the transformer architecture are increasingly improving performance on protein prediction tasks, including secondary structure, subcellular localization, and more. Despite being trained only on protein sequences, protein language models appear to implicitly learn protein structure. This paper investigates whether sequence representations learned by protein language models encode structural information and to what extent. ResultsWe address this by evaluating protein language models on remote homology prediction, where identifying remote homologs from sequence information alone requires structural knowledge, especially in the “twilight zone” of very low sequence identity. Through rigorous testing at progressively lower sequence identities, we profile the performance of protein language models ranging from millions to billions of parameters in a zero-shot setting. Our findings indicate that while transformer-based protein language models outperform traditional sequence alignment methods, they still struggle in the twilight zone. This suggests that current protein language models have not sufficiently learned protein structure to address remote homology prediction when sequence signals are weak. Availability and implementationWe believe this opens the way for further research both on remote homology prediction and on the broader goal of learning sequence- and structure-rich representations of protein molecules. All code, data, and models are made publicly available.more » « less
-
Background: Relationships between bio-entities (genes, proteins, diseases, etc.) constitute a significant part of our knowledge. Most of this information is documented as unstructured text in different forms, such as books, articles and on-line pages. Automatic extraction of such information and storing it in structured form could help researchers more easily access such information and also make it possible to incorporate it in advanced integrative analysis. In this study, we developed a novel approach to extract bio-entity relationships information using Nature Language Processing (NLP) and a graph-theoretic algorithm. Methods: Our method, called GRGT (Grammatical Relationship Graph for Triplets), not only extracts the pairs of terms that have certain relationships, but also extracts the type of relationship (the word describing the relationships). In addition, the directionality of the relationship can also be extracted. Our method is based on the assumption that a triplet exists for a pair of interactions. A triplet is defined as two terms (entities) and an interaction word describing the relationship of the two terms in a sentence. We first use a sentence parsing tool to obtain the sentence structure represented as a dependency graph where words are nodes and edges are typed dependencies. The shortest paths among the pairs of words in the triplet are then extracted, which form the basis for our information extraction method. Flexible pattern matching scheme was then used to match a triplet graph with unknown relationship to those triplet graphs with labels (True or False) in the database. Results: We applied the method on three benchmark datasets to extract the protein-protein-interactions (PPIs), and obtained better precision than the top performing methods in literature. Conclusions: We have developed a method to extract the protein-protein interactions from biomedical literature. PPIs extracted by our method have higher precision among other methods, suggesting that our method can be used to effectively extract PPIs and deposit them into databases. Beyond extracting PPIs, our method could be easily extended to extracting relationship information between other bio-entities.more » « less
-
Abstract Structural and compositional diversities of proteins generate a number of functions for fabricating novel and advanced materials. Recent progress in protein engineering endows flexible approaches and new functionalities, which makes the fabricated materials potentially applicable in a broad spectrum of fields. Such engineering strategies by applying proteins alone or together with other molecules derive numerous functional materials such as patterned nanometal materials/nanometallic compounds, well‐designed nanocomposites, etc. Advantages in materials’ tunability, property improvement (e.g., electronic and mechanical properties, etc.), functionalities, and biocompatibility have been demonstrated, thus providing alternatives to existing materials via conventional methods. This review summarizes and discusses the strategies of fabricating functional materials using proteins as the critical contributors. Benefiting from their versatility, proteins find their roles in engineering functional materials via acting as structure‐control agents, reaction agents, and battery components, which are emphasized in this review. The strategies of each group of functions are specifically detailed. Properties of protein‐engineered functional materials and their potential applications in the fields of microelectronics, energy storage and conversion, sensor devices, etc. are also reviewed.more » « less
An official website of the United States government
