Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In recent years, magnetic particle imaging (MPI) has emerged as a promising imaging technique depicting high sensitivity and spatial resolution. It originated in the early 2000s where it proposed a new approach to challenge the low spatial resolution achieved by using relaxometry in order to measure the magnetic fields. MPI presents 2D and 3D images with high temporal resolution, non‐ionizing radiation, and optimal visual contrast due to its lack of background tissue signal. Traditionally, the images were reconstructed by the conversion of signal from the induced voltage by generating system matrix and X‐space based methods. Because image reconstruction and analyses play an integral role in obtaining precise information from MPI signals, newer artificial intelligence‐based methods are continuously being researched and developed upon. In this work, we summarize and review the significance and employment of machine learning and deep learning models for applications with MPI and the potential they hold for the future. Level of Evidence5 Technical EfficacyStage 1more » « lessFree, publicly-accessible full text available January 1, 2026
-
Abstract The escalating drug addiction crisis in the United States underscores the urgent need for innovative therapeutic strategies. This study embarked on an innovative and rigorous strategy to unearth potential drug repurposing candidates for opioid and cocaine addiction treatment, bridging the gap between transcriptomic data analysis and drug discovery. We initiated our approach by conducting differential gene expression analysis on addiction-related transcriptomic data to identify key genes. We propose a novel topological differentiation to identify key genes from a protein–protein interaction network derived from DEGs. This method utilizes persistent Laplacians to accurately single out pivotal nodes within the network, conducting this analysis in a multiscale manner to ensure high reliability. Through rigorous literature validation, pathway analysis and data-availability scrutiny, we identified three pivotal molecular targets, mTOR, mGluR5 and NMDAR, for drug repurposing from DrugBank. We crafted machine learning models employing two natural language processing (NLP)-based embeddings and a traditional 2D fingerprint, which demonstrated robust predictive ability in gauging binding affinities of DrugBank compounds to selected targets. Furthermore, we elucidated the interactions of promising drugs with the targets and evaluated their drug-likeness. This study delineates a multi-faceted and comprehensive analytical framework, amalgamating bioinformatics, topological data analysis and machine learning, for drug repurposing in addiction treatment, setting the stage for subsequent experimental validation. The versatility of the methods we developed allows for applications across a range of diseases and transcriptomic datasets.more » « less
-
Abstract Pain is a significant global health issue, and the current treatment options for pain management have limitations in terms of effectiveness, side effects, and potential for addiction. There is a pressing need for improved pain treatments and the development of new drugs. Voltage-gated sodium channels, particularly Nav1.3, Nav1.7, Nav1.8, and Nav1.9, play a crucial role in neuronal excitability and are predominantly expressed in the peripheral nervous system. Targeting these channels may provide a means to treat pain while minimizing central and cardiac adverse effects. In this study, we construct protein–protein interaction (PPI) networks based on pain-related sodium channels and develop a corresponding drug–target interaction network to identify potential lead compounds for pain management. To ensure reliable machine learning predictions, we carefully select 111 inhibitor data sets from a pool of more than 1000 targets in the PPI network. We employ 3 distinct machine learning algorithms combined with advanced natural language processing (NLP)–based embeddings, specifically pretrained transformer and autoencoder representations. Through a systematic screening process, we evaluate the side effects and repurposing potential of more than 150,000 drug candidates targeting Nav1.7 and Nav1.8 sodium channels. In addition, we assess the ADMET (absorption, distribution, metabolism, excretion, and toxicity) properties of these candidates to identify leads with near-optimal characteristics. Our strategy provides an innovative platform for the pharmacological development of pain treatments, offering the potential for improved efficacy and reduced side effects.more » « less
-
Abstract Protein engineering is an emerging field in biotechnology that has the potential to revolutionize various areas, such as antibody design, drug discovery, food security, ecology, and more. However, the mutational space involved is too vast to be handled through experimental means alone. Leveraging accumulative protein databases, machine learning (ML) models, particularly those based on natural language processing (NLP), have considerably expedited protein engineering. Moreover, advances in topological data analysis (TDA) and artificial intelligence-based protein structure prediction, such as AlphaFold2, have made more powerful structure-based ML-assisted protein engineering strategies possible. This review aims to offer a comprehensive, systematic, and indispensable set of methodological components, including TDA and NLP, for protein engineering and to facilitate their future development.more » « less
-
Abstract The Poisson–Boltzmann (PB) model is a widely used electrostatic model for biomolecular solvation analysis. Formulated as an elliptic interface problem, the PB model can be numerically solved on either Eulerian meshes using finite difference/finite element methods or Lagrangian meshes using boundary element methods. Molecular surface generators, which produce the discretized dielectric interfaces between solutes and solvents, are critical factors in determining the accuracy and efficiency of the PB solvers. In this work, we investigate the utility of the Eulerian Solvent Excluded Surface (ESES) software for rendering conjugated Eulerian and Lagrangian surface representations, which enables us to numerically validate and compare the quality of Eulerian PB solvers, such as the MIBPB solver, and the Lagrangian PB solvers, such as the TABI‐PB solver. Furthermore, with the ESES software and its associated PB solvers, we are able to numerically validate an interesting and useful but often neglected source‐target symmetric property associated with the linearized PB model.more » « less
-
Abstract SARS-CoV-2 has been mutating since it was first sequenced in early January 2020. Here, we analyze 45,494 complete SARS-CoV-2 geneome sequences in the world to understand their mutations. Among them, 12,754 sequences are from the United States. Our analysis suggests the presence of four substrains and eleven top mutations in the United States. These eleven top mutations belong to 3 disconnected groups. The first and second groups consisting of 5 and 8 concurrent mutations are prevailing, while the other group with three concurrent mutations gradually fades out. Moreover, we reveal that female immune systems are more active than those of males in responding to SARS-CoV-2 infections. One of the top mutations, 27964C > T-(S24L) on ORF8, has an unusually strong gender dependence. Based on the analysis of all mutations on the spike protein, we uncover that two of four SARS-CoV-2 substrains in the United States become potentially more infectious.more » « less
-
Abstract Persistent homology is constrained to purely topological persistence, while multiscale graphs account only for geometric information. This work introduces persistent spectral theory to create a unified low‐dimensional multiscale paradigm for revealing topological persistence and extracting geometric shapes from high‐dimensional datasets. For a point‐cloud dataset, a filtration procedure is used to generate a sequence of chain complexes and associated families of simplicial complexes and chains, from which we construct persistent combinatorial Laplacian matrices. We show that a full set of topological persistence can be completely recovered from the harmonic persistent spectra, that is, the spectra that have zero eigenvalues, of the persistent combinatorial Laplacian matrices. However, non‐harmonic spectra of the Laplacian matrices induced by the filtration offer another powerful tool for data analysis, modeling, and prediction. In this work, fullerene stability is predicted by using both harmonic spectra and non‐harmonic persistent spectra, while the latter spectra are successfully devised to analyze the structure of fullerenes and model protein flexibility, which cannot be straightforwardly extracted from the current persistent homology. The proposed method is found to provide excellent predictions of the protein B‐factors for which current popular biophysical models break down.more » « less
-
In the past decade, topological data analysis has emerged as a powerful algebraic topology approach in data science. Although knot theory and related subjects are a focus of study in mathematics, their success in practical applications is quite limited due to the lack of localization and quantization. We address these challenges by introducing knot data analysis (KDA), a paradigm that incorporates curve segmentation and multiscale analysis into the Gauss link integral. The resulting multiscale Gauss link integral (mGLI) recovers the global topological properties of knots and links at an appropriate scale and offers a multiscale geometric topology approach to capture the local structures and connectivities in data. By integration with machine learning or deep learning, the proposed mGLI significantly outperforms other state-of-the-art methods across various benchmark problems in 13 intricately complex biological datasets, including protein flexibility analysis, protein–ligand interactions, human Ether-à-go-go-Related Gene potassium channel blockade screening, and quantitative toxicity assessment. Our KDA opens a research area—knot deep learning—in data science.more » « lessFree, publicly-accessible full text available October 15, 2025
-
Free, publicly-accessible full text available August 1, 2025
-
Free, publicly-accessible full text available July 1, 2025