skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Cosmic Ultraviolet Baryon Survey (CUBS) – VI. Connecting physical properties of the cool circumgalactic medium to galaxies at z ≈ 1
ABSTRACT This paper presents a newly established sample of 19 unique galaxies and galaxy groups at redshift z = 0.89–1.21 in six QSO fields from the Cosmic Ultraviolet Baryon Survey (CUBS), designated as the CUBSz1 sample. In this sample, nine galaxies or galaxy groups show absorption features, while the other 10 systems exhibit 2σ upper limits of $$\log N (\rm{He\,{\small I}})/\mbox{$${\rm cm^{-2}}$$}\lesssim 13.5$$ and $$\log N (\rm{O\,{\small V}})/\mbox{$${\rm cm^{-2}}$$}\lesssim 13.3$$. Environmental properties of the galaxies, including galaxy overdensities, the total stellar mass and gravitational potential summed over all neighbours, and the presence of local ionizing sources, are found to have a significant impact on the observed CGM absorption properties. Specifically, massive galaxies and galaxies in overdense regions exhibit a higher rate of incidence of absorption. The CGM absorption properties in galaxy groups appear to be driven by the galaxy closest to the QSO sightline, rather than by the most massive galaxy or by mass-weighted properties. We introduce a total projected gravitational potential ψ, defined as −ψ/G = ∑Mhalo/dproj summed over all group members, to characterize the galaxy environment. This projected gravitational potential correlates linearly with the maximum density detected in each sightline (i.e. a power-law slope of $$0.95_{-0.14}^{+0.15}$$), consistent with higher pressure gas being confined in deeper gravitational potential wells. In addition, we find that the radial profile of cool gas density exhibits a decline from the inner regions to the outskirts, and the amplitude is consistent with the cool gas being in pressure balance with the hot halo. Finally, we note that the ionizing flux from nearby galaxies can elevate the N(H i)/N(He i) ratio, which provides a unique diagnostic of possible local sources contributing to the ionizing radiation field.  more » « less
Award ID(s):
1715692 1652522 2307327 2108230
PAR ID:
10441176
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
524
Issue:
1
ISSN:
0035-8711
Page Range / eLocation ID:
512 to 528
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. While quiescent galaxies have comparable amounts of cool gas in their outer circumgalactic medium (CGM) compared to star-forming galaxies, they have significantly less interstellar gas. However, open questions remain on the processes causing galaxies to stop forming stars and stay quiescent. Theories suggest dynamical interactions with the hot corona prevent cool gas from reaching the galaxy, therefore predicting the inner regions of quiescent galaxy CGMs are devoid of cool gas. However, there is a lack of understanding of the inner regions of CGMs due to the lack of spatial information in quasar-sightline methods. We present integral-field spectroscopy probing 10–20 kpc (2.4–4.8 Re) around a massive quiescent galaxy using a gravitationally lensed star-forming galaxy. We detect absorption from Magnesium (MgII) implying large amounts of cool atomic gas (108.4–109.3 M⊙ with T~104 Kelvin), in comparable amounts to star-forming galaxies. Lens modeling of Hubble imaging also reveals a diffuse asymmetric component of significant mass consistent with the spatial extent of the MgII absorption, and offset from the galaxy light profile. This study demonstrates the power of galaxy-scale gravitational lenses to not only probe the gas around galaxies, but to also independently probe the mass of the CGM due to it's gravitational effect. 
    more » « less
  2. Abstract The bimodal absorption system imaging campaign (BASIC) aims to characterize the galaxy environments of a sample of 36 H i -selected partial Lyman limit systems (pLLSs) and Lyman limit systems (LLSs) in 23 QSO fields at z ≲ 1. These pLLSs/LLSs provide a unique sample of absorbers with unbiased and well-constrained metallicities, allowing us to explore the origins of metal-rich and low-metallicity circumgalactic medium (CGM) at z < 1. Here we present Keck/KCWI and Very Large Telescope/MUSE observations of 11 of these QSO fields (19 pLLSs) that we combine with Hubble Space Telescope/Advanced Camera for Surveys imaging to identify and characterize the absorber-associated galaxies at 0.16 ≲ z ≲ 0.84. We find 23 unique absorber-associated galaxies, with an average of one associated galaxy per absorber. For seven absorbers, all with <10% solar metallicities, we find no associated galaxies with log M ⋆ ≳ 9.0 within ρ / R vir and ∣Δ v ∣/ v esc ≤ 1.5 with respect to the absorber. We do not find any strong correlations between the metallicities or H i column densities of the gas and most of the galaxy properties, except for the stellar mass of the galaxies: the low-metallicity ([X/H] ≤ −1.4) systems have a probability of 0.39 − 0.15 + 0.16 for having a host galaxy with log M ⋆ ≥ 9.0 within ρ / R vir ≤ 1.5, while the higher metallicity absorbers have a probability of 0.78 − 0.13 + 0.10 . This implies metal-enriched pLLSs/LLSs at z < 1 are typically associated with the CGM of galaxies with log M ⋆ > 9.0 , whereas low-metallicity pLLSs/LLSs are found in more diverse locations, with one population arising in the CGM of galaxies and another more broadly distributed in overdense regions of the universe. Using absorbers not associated with galaxies, we estimate the unweighted geometric mean metallicity of the intergalactic medium to be [X/H] ≲ −2.1 at z < 1, which is lower than previously estimated. 
    more » « less
  3. ABSTRACT Theoretical arguments and observations suggest that in massive haloes ($$>10^{12}\, {\rm M}_\odot$$), the circumgalactic medium (CGM) is dominated by a ‘hot’ phase with gas temperature near the virial temperature ($$T\approx T_{\rm vir}$$) and a quasi-hydrostatic pressure profile. Lower-mass haloes are however unlikely to be filled with a similar quasi-static hot phase, due to rapid radiative cooling. Using the FIRE (Feedback In Realistic Environment) cosmological zoom simulations, we demonstrate that the hot phase is indeed subdominant at inner radii ($$\lesssim 0.3 R_{\rm vir}$$) of $$\lesssim 10^{12}\, {\rm M}_\odot$$ haloes, and the inner CGM is instead filled with $$T\ll T_{\rm vir}$$ gas originating in outflows and inflows, with a turbulent velocity comparable to the halo virial velocity. The turbulent velocity thus exceeds the mass-weighted sound speed in the inner CGM, and the turbulence is supersonic. UV absorption features from such CGM trace the wide lognormal density distributions of the predominantly cool and turbulent volume-filling phase, in contrast with tracing localized cool ‘clouds’ embedded in a hot medium. We predict equivalent widths of $$W_\lambda \sim 2\lambda v_{\rm c}/c\sim 1$$Å for a broad range of strong UV and EUV transitions (Mg ii, C ii, C iv, Si ii–iv, O iii–v) in sightlines through inner CGM dominated by turbulent pressure of $$\lesssim L^\star$$ galaxies at redshifts $$0\le z\lesssim 2$$, where $$\lambda$$ is the transition wavelength, $$v_{\rm c}$$ is the circular velocity, and c is the speed of light. Comparison of our predictions with observational constraints suggests that star forming $$\lesssim$$ $$L^\star$$ and dwarf galaxies are generally dominated by turbulent pressure in their inner CGM, rather than by thermal pressure. The inner CGM surrounding these galaxies is thus qualitatively distinct from that around quenched galaxies and massive discs such as the Milky-Way and M31, in which thermal pressure likely dominates. 
    more » « less
  4. ABSTRACT The distribution of gas and metals in the circumgalactic medium (CGM) plays a critical role in how galaxies evolve. The MUSE-ALMA Haloes survey combines MUSE, ALMA, and HST observations to constrain the properties of the multiphase gas in the CGM and the galaxies associated with the gas probed in absorption. In this paper, we analyse the properties of galaxies associated with 32 strong $${\rm H\, {\small I}}$$ Ly-α absorbers at redshift 0.2 ≲ z ≲ 1.4. We detect 79 galaxies within ±500 kms−1 of the absorbers in our 19 MUSE fields. These associated galaxies are found at physical distances from 5.7 kpc and reach star formation rates as low as 0.1 M⊙ yr−1. The significant number of associated galaxies allows us to map their physical distribution on the Δv and b plane. Building on previous studies, we examine the physical and nebular properties of these associated galaxies and find the following: (i) 27/32 absorbers have galaxy counterparts and more than 50 per cent of the absorbers have two or more associated galaxies, (ii) the $${\rm H\, {\small I}}$$ column density of absorbers is anticorrelated with the impact parameter (scaled by virial radius) of the nearest galaxy as expected from simulations, (iii) the metallicity of associated galaxies is typically larger than the absorber metallicity, which decreases at larger impact parameters. It becomes clear that while strong $${\rm H\, {\small I}}$$ absorbers are typically associated with more than a single galaxy, we can use them to statistically map the gas and metal distribution in the CGM. 
    more » « less
  5. ABSTRACT Recent searches for the hosts of z ∼ 4 damped Ly α absorbers (DLAs) have detected bright galaxies at distances of tens of kpc from the DLA. Using the FIRE-2 cosmological zoom simulations, we argue that these relatively large distances are due to a predominantly cool and neutral inner circumgalactic medium (CGM) surrounding high-redshift galaxies. The inner CGM is cool because of the short cooling time of hot gas in $${\lesssim}10^{12}\, {\rm M_{\odot }}$$ haloes, which implies that accretion and feedback energy are radiated quickly, while it is neutral due to high volume densities and column densities at high redshift that shield cool gas from photoionization. Our analysis predicts large DLA covering factors ($${\gtrsim}50{{\ \rm per\ cent}}$$) out to impact parameters ∼0.3[(1 + z)/5]3/2Rvir from the central galaxies at z ≳ 1, equivalent to a proper distance of $${\sim}21\, M_{12}^{1/3} \left(\left(1+z\right)/5\right)^{1/2}\, {\rm kpc}$$ (Rvir and M12 are the halo virial radius and mass in units of $$10^{12}\, {\rm M_{\odot }}$$, respectively). This implies that DLA covering factors at z ∼ 4 may be comparable to unity out to a distance ∼10 times larger than stellar half-mass radii. A predominantly neutral inner CGM in the early universe suggests that its mass and metallicity can be directly constrained by absorption surveys, without resorting to the large ionization corrections as required for ionized CGM. 
    more » « less