- Award ID(s):
- 2140247
- PAR ID:
- 10441203
- Date Published:
- Journal Name:
- the IEEE/CVF Winter Conference on Applications of Computer Vision
- Page Range / eLocation ID:
- 5531-5540
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Pretrained Transformers achieve remarkable performance when training and test data are from the same distribution. However, in real-world scenarios, the model often faces out-of-distribution (OOD) instances that can cause severe semantic shift problems at inference time. Therefore, in practice, a reliable model should identify such instances, and then either reject them during inference or pass them over to models that handle another distribution. In this paper, we develop an unsupervised OOD detection method, in which only the in-distribution (ID) data are used in training. We propose to fine-tune the Transformers with a contrastive loss, which improves the compactness of representations, such that OOD instances can be better differentiated from ID ones. These OOD instances can then be accurately detected using the Mahalanobis distance in the model’s penultimate layer. We experiment with comprehensive settings and achieve near-perfect OOD detection performance, outperforming baselines drastically. We further investigate the rationales behind the improvement, finding that more compact representations through margin-based contrastive learning bring the improvement. We release our code to the community for future research.more » « less
-
Out-of-distribution (OOD) detection is important for machine learning models deployed in the wild. Recent methods use auxiliary outlier data to regularize the model for improved OOD detection. However, these approaches make a strong distributional assumption that the auxiliary outlier data is completely separable from the in-distribution (ID) data. In this paper, we propose a novel framework that leverages wild mixture data -- that naturally consists of both ID and OOD samples. Such wild data is abundant and arises freely upon deploying a machine learning classifier in their \emph{natural habitats}. Our key idea is to formulate a constrained optimization problem and to show how to tractably solve it. Our learning objective maximizes the OOD detection rate, subject to constraints on the classification error of ID data and on the OOD error rate of ID examples. We extensively evaluate our approach on common OOD detection tasks and demonstrate superior performance.more » « less
-
Deep neural networks have witnessed huge successes in many challenging prediction tasks and yet they often suffer from out-of-distribution (OoD) samples, misclassifying them with high confidence. Recent advances show promising OoD detection performance for centralized training, and however, OoD detection in federated learning (FL) is largely overlooked, even though many security sensitive applications such as autonomous driving and voice recognition authorization are commonly trained using FL for data privacy concerns. The main challenge that prevents previous state-of-the-art OoD detection methods from being incorporated to FL is that they require large amount of real OoD samples. However, in real-world scenarios, such large-scale OoD training data can be costly or even infeasible to obtain, especially for resource-limited local devices. On the other hand, a notorious challenge in FL is data heterogeneity where each client collects non-identically and independently distributed (non-iid) data. We propose to take advantage of such heterogeneity and turn the curse into a blessing that facilitates OoD detection in FL. The key is that for each client, non-iid data from other clients (unseen external classes) can serve as an alternative to real OoD samples. Specifically, we propose a novel Federated Out-of-Distribution Synthesizer (FOSTER), which learns a class-conditional generator to synthesize virtual external-class OoD samples, and maintains data confidentiality and communication efficiency required by FL. Experimental results show that our method outperforms the state-of-the-art by 2.49%, 2.88%, 1.42% AUROC, and 0.01%, 0.89%, 1.74% ID accuracy, on CIFAR-10, CIFAR-100, and STL10, respectively.more » « less
-
Deep neural networks have witnessed huge successes in many challenging prediction tasks and yet they often suffer from out-of-distribution (OoD) samples, misclassifying them with high confidence. Recent advances show promising OoD detection performance for centralized training, and however, OoD detection in federated learning (FL) is largely overlooked, even though many security sensitive applications such as autonomous driving and voice recognition authorization are commonly trained using FL for data privacy concerns. The main challenge that prevents previous state-of-the-art OoD detection methods from being incorporated to FL is that they require large amount of real OoD samples. However, in real-world scenarios, such large-scale OoD training data can be costly or even infeasible to obtain, especially for resource-limited local devices. On the other hand, a notorious challenge in FL is data heterogeneity where each client collects non-identically and independently distributed (non-iid) data. We propose to take advantage of such heterogeneity and turn the curse into a blessing that facilitates OoD detection in FL. The key is that for each client, non-iid data from other clients (unseen external classes) can serve as an alternative to real OoD samples. Specifically, we propose a novel Federated Out-of-Distribution Synthesizer (FOSTER), which learns a class-conditional generator to synthesize virtual external-class OoD samples, and maintains data confidentiality and communication efficiency required by FL. Experimental results show that our method outperforms the state-of-the-art by 2.49%, 2.88%, 1.42% AUROC, and 0.01%, 0.89%, 1.74% ID accuracy, on CIFAR-10, CIFAR-100, and STL10, respectively.more » « less
-
Incorporating learning based components in the current state-of-the-art cyber-physical systems (CPS) has been a challenge due to the brittleness of the underlying deep neural networks. On the bright side, if executed correctly with safety guarantees, this has the ability to revolutionize domains like autonomous systems, medicine, and other safety-critical domains. This is because it would allow system designers to use high-dimensional outputs from sensors like camera and LiDAR. The trepidation in deploying systems with vision and LiDAR components comes from incidents of catastrophic failures in the real world. Recent reports of self-driving cars running into difficult to handle scenarios is ingrained in the software components which handle such sensor inputs.more » « less
The ability to handle such high-dimensional signals is due to the explosion of algorithms which use deep neural networks. Sadly, the reason behind the safety issues is also due to deep neural networks themselves. The pitfalls occur due to possible over-fitting and lack of awareness about the blind spots induced by the training distribution. Ideally, system designers would wish to cover as many scenarios during training as possible. However, achieving a meaningful coverage is impossible. This naturally leads to the following question: is it feasible to flag out-of-distribution (OOD) samples without causing too many false alarms? Such an OOD detector should be executable in a fashion that is computationally efficient. This is because OOD detectors often are executed as frequently as the sensors are sampled.
Our aim in this article is to build an effective anomaly detector. To this end, we propose the idea of a memory bank to cache data samples which are representative enough to cover most of the in-distribution data. The similarity with respect to such samples can be a measure of familiarity of the test input. This is made possible by an appropriate choice of distance function tailored to the type of sensor we are interested in. Additionally, we adapt conformal anomaly detection framework to capture the distribution shifts with a guarantee of false alarm rate. We report the performance of our technique on two challenging scenarios: a self-driving car setting implemented inside the simulator CARLA with image inputs and autonomous racing car navigation setting with LiDAR inputs. From the experiments, it is clear that a deviation from the in-distribution setting can potentially lead to unsafe behavior. It should be noted that not all OOD inputs lead to precarious situations in practice, but staying in-distribution is akin to staying within a safety bubble and predictable behavior. An added benefit of our memory-based approach is that the OOD detector produces interpretable feedback for a human designer. This is of utmost importance since it recommends a potential fix for the situation as well. In other competing approaches, such feedback is difficult to obtain due to reliance on techniques which use variational autoencoders.