Abstract Maximum likelihood (ML) phylogenetic inference is widely used in phylogenomics. As heuristic searches most likely find suboptimal trees, it is recommended to conduct multiple (e.g., 10) tree searches in phylogenetic analyses. However, beyond its positive role, how and to what extent multiple tree searches aid ML phylogenetic inference remains poorly explored. Here, we found that a random starting tree was not as effective as the BioNJ and parsimony starting trees in inferring the ML gene tree and that RAxML-NG and PhyML were less sensitive to different starting trees than IQ-TREE. We then examined the effect of the number of tree searches on ML tree inference with IQ-TREE and RAxML-NG, by running 100 tree searches on 19,414 gene alignments from 15 animal, plant, and fungal phylogenomic datasets. We found that the number of tree searches substantially impacted the recovery of the best-of-100 ML gene tree topology among 100 searches for a given ML program. In addition, all of the concatenation-based trees were topologically identical if the number of tree searches was ≥10. Quartet-based ASTRAL trees inferred from 1 to 80 tree searches differed topologically from those inferred from 100 tree searches for 6/15 phylogenomic datasets. Finally, our simulations showed that gene alignments with lower difficulty scores had a higher chance of finding the best-of-100 gene tree topology and were more likely to yield the correct trees.
more »
« less
Geodesics to characterize the phylogenetic landscape
Phylogenetic trees are fundamental for understanding evolutionary history. However, finding maximum likelihood trees is challenging due to the complexity of the likelihood landscape and the size of tree space. Based on the Billera-Holmes-Vogtmann (BHV) distance between trees, we describe a method to generate intermediate trees on the shortest path between two trees, called pathtrees. These pathtrees give a structured way to generate and visualize part of treespace. They allow investigating intermediate regions between trees of interest, exploring locally optimal trees in topological clusters of treespace, and potentially finding trees of high likelihood unexplored by tree search algorithms. We compared our approach against other tree search tools (P aup *, RA x ML, and R ev B ayes ) using the highest likelihood trees and number of new topologies found, and validated the accuracy of the generated treespace. We assess our method using two datasets. The first consists of 23 primate species (CytB, 1141 bp), leading to well-resolved relationships. The second is a dataset of 182 milksnakes (CytB, 1117 bp), containing many similar sequences and complex relationships among individuals. Our method visualizes the treespace using log likelihood as a fitness function. It finds similarly optimal trees as heuristic methods and presents the likelihood landscape at different scales. It found relevant trees that were not found with MCMC methods. The validation measures indicated that our method performed well mapping treespace into lower dimensions. Our method complements heuristic search analyses, and the visualization allows the inspection of likelihood terraces and exploration of treespace areas not visited by heuristic searches.
more »
« less
- PAR ID:
- 10441246
- Editor(s):
- Yoshida, Ruriko
- Date Published:
- Journal Name:
- PLOS ONE
- Volume:
- 18
- Issue:
- 6
- ISSN:
- 1932-6203
- Page Range / eLocation ID:
- e0287350
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract MotivationPhylogenomics faces a dilemma: on the one hand, most accurate species and gene tree estimation methods are those that co-estimate them; on the other hand, these co-estimation methods do not scale to moderately large numbers of species. The summary-based methods, which first infer gene trees independently and then combine them, are much more scalable but are prone to gene tree estimation error, which is inevitable when inferring trees from limited-length data. Gene tree estimation error is not just random noise and can create biases such as long-branch attraction. ResultsWe introduce a scalable likelihood-based approach to co-estimation under the multi-species coalescent model. The method, called quartet co-estimation (QuCo), takes as input independently inferred distributions over gene trees and computes the most likely species tree topology and internal branch length for each quartet, marginalizing over gene tree topologies and ignoring branch lengths by making several simplifying assumptions. It then updates the gene tree posterior probabilities based on the species tree. The focus on gene tree topologies and the heuristic division to quartets enables fast likelihood calculations. We benchmark our method with extensive simulations for quartet trees in zones known to produce biased species trees and further with larger trees. We also run QuCo on a biological dataset of bees. Our results show better accuracy than the summary-based approach ASTRAL run on estimated gene trees. Availability and implementationQuCo is available on https://github.com/maryamrabiee/quco. Supplementary informationSupplementary data are available at Bioinformatics online.more » « less
-
Satta, Yoko (Ed.)Abstract Likelihood-based tests of phylogenetic trees are a foundation of modern systematics. Over the past decade, an enormous wealth and diversity of model-based approaches have been developed for phylogenetic inference of both gene trees and species trees. However, while many techniques exist for conducting formal likelihood-based tests of gene trees, such frameworks are comparatively underdeveloped and underutilized for testing species tree hypotheses. To date, widely used tests of tree topology are designed to assess the fit of classical models of molecular sequence data and individual gene trees and thus are not readily applicable to the problem of species tree inference. To address this issue, we derive several analogous likelihood-based approaches for testing topologies using modern species tree models and heuristic algorithms that use gene tree topologies as input for maximum likelihood estimation under the multispecies coalescent. For the purpose of comparing support for species trees, these tests leverage the statistical procedures of their original gene tree-based counterparts that have an extended history for testing phylogenetic hypotheses at a single locus. We discuss and demonstrate a number of applications, limitations, and important considerations of these tests using simulated and empirical phylogenomic data sets that include both bifurcating topologies and reticulate network models of species relationships. Finally, we introduce the open-source R package SpeciesTopoTestR (SpeciesTopology Tests in R) that includes a suite of functions for conducting formal likelihood-based tests of species topologies given a set of input gene tree topologies.more » « less
-
Abstract Gene trees can be different from the species tree due to biological processes and inference errors. One way to obtain a species tree is to find one that maximizes some measure of similarity to a set of gene trees. The number of shared quartets between a potential species tree and gene trees provides a statistically justifiable score; if maximized properly, it could result in a statistically consistent estimator of the species tree under several statistical models of discordance. However, finding the median quartet score tree, one that maximizes this score, is NP-Hard, motivating several existing heuristic algorithms. These heuristics do not follow the hill-climbing paradigm used extensively in phylogenetics. In this paper, we make theoretical contributions that enable an efficient hill-climbing approach. Specifically, we show that a subtree of sizemcan be placed optimally on a tree of sizenin quasi-linear time with respect tonand (almost) independently ofm. This result enables us to perform subtree prune and regraft (SPR) rearrangements as part of a hill-climbing search. We show that this approach can slightly improve upon the results of widely-used methods such as ASTRAL in terms of the optimization score but not necessarily accuracy.more » « less
-
In this paper, we discuss the relevance and effectiveness of two com-mon methods for searching decision trees that represent design problems. When design problems are encoded in decision trees they are of-ten multimodal, capture a range of complexity in valid solutions, and have distinguishable internal locations. We propose the use of a simple Color Graph problem to represent these characteristics. The two methods evaluated are a genetic algorithm and a Monte Carlo tree search. Using the Color Graph problem, it is demonstrated that a genetic algorithm can perform exceptionally well on such unbounded and opaque design decision trees and that Monte Carlo tree searches are ineffective. Insights from this experiment are used to draw conclusions about the nature of design problems stored in decision trees and the need for new methods to search such trees and lead us to believe that exploitative methods are more effective than rigorously explorative methods.more » « less
An official website of the United States government

