skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Comparison of Tree Search Method for Graph Topology Design Problems
In this paper, we discuss the relevance and effectiveness of two com-mon methods for searching decision trees that represent design problems. When design problems are encoded in decision trees they are of-ten multimodal, capture a range of complexity in valid solutions, and have distinguishable internal locations. We propose the use of a simple Color Graph problem to represent these characteristics. The two methods evaluated are a genetic algorithm and a Monte Carlo tree search. Using the Color Graph problem, it is demonstrated that a genetic algorithm can perform exceptionally well on such unbounded and opaque design decision trees and that Monte Carlo tree searches are ineffective. Insights from this experiment are used to draw conclusions about the nature of design problems stored in decision trees and the need for new methods to search such trees and lead us to believe that exploitative methods are more effective than rigorously explorative methods.  more » « less
Award ID(s):
1662731
PAR ID:
10077591
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
International Conference on Design Computing And Cognition (DCC'18 or DCC18)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Graph neural networks have been successful for machine learning, as well as for combinatorial and graph problems such as the Subgraph Isomorphism Problem and the Traveling Salesman Problem. We describe an approach for computing graph sparsifiers by combining a graph neural network and Monte Carlo Tree Search. We first train a graph neural network that takes as input a partial solution and proposes a new node to be added as output. This neural network is then used in a Monte Carlo search to compute a sparsifier. The proposed method consistently outperforms several standard approximation algorithms on different types of graphs and often finds the optimal solution. 
    more » « less
  2. Sequential decision-making under uncertainty is present in many important problems. Two popular approaches for tackling such problems are reinforcement learning and online search (e.g., Monte Carlo tree search). While the former learns a policy by interacting with the environment (typically done before execution), the latter uses a generative model of the environment to sample promising action trajectories at decision time. Decision-making is particularly challenging in non-stationary environments, where the environment in which an agent operates can change over time. Both approaches have shortcomings in such settings -- on the one hand, policies learned before execution become stale when the environment changes and relearning takes both time and computational effort. Online search, on the other hand, can return sub-optimal actions when there are limitations on allowed runtime. In this paper, we introduce \textit{Policy-Augmented Monte Carlo tree search} (PA-MCTS), which combines action-value estimates from an out-of-date policy with an online search using an up-to-date model of the environment. We prove theoretical results showing conditions under which PA-MCTS selects the one-step optimal action and also bound the error accrued while following PA-MCTS as a policy. We compare and contrast our approach with AlphaZero, another hybrid planning approach, and Deep Q Learning on several OpenAI Gym environments. Through extensive experiments, we show that under non-stationary settings with limited time constraints, PA-MCTS outperforms these baselines. 
    more » « less
  3. Sparse decision tree optimization has been one of the most fundamental problems in AI since its inception and is a challenge at the core of interpretable machine learning. Sparse decision tree optimization is computationally hard, and despite steady effort since the 1960's, breakthroughs have been made on the problem only within the past few years, primarily on the problem of finding optimal sparse decision trees. However, current state-of-the-art algorithms often require impractical amounts of computation time and memory to find optimal or near-optimal trees for some real-world datasets, particularly those having several continuous-valued features. Given that the search spaces of these decision tree optimization problems are massive, can we practically hope to find a sparse decision tree that competes in accuracy with a black box machine learning model? We address this problem via smart guessing strategies that can be applied to any optimal branch-and-bound-based decision tree algorithm. The guesses come from knowledge gleaned from black box models. We show that by using these guesses, we can reduce the run time by multiple orders of magnitude while providing bounds on how far the resulting trees can deviate from the black box's accuracy and expressive power. Our approach enables guesses about how to bin continuous features, the size of the tree, and lower bounds on the error for the optimal decision tree. Our experiments show that in many cases we can rapidly construct sparse decision trees that match the accuracy of black box models. To summarize: when you are having trouble optimizing, just guess. 
    more » « less
  4. Summary Tree graphs are used routinely in statistics. When estimating a Bayesian model with a tree component, sampling the posterior remains a core difficulty. Existing Markov chain Monte Carlo methods tend to rely on local moves, often leading to poor mixing. A promising approach is to instead directly sample spanning trees on an auxiliary graph. Current spanning tree samplers, such as the celebrated Aldous–Broder algorithm, rely predominantly on simulating random walks that are required to visit all the nodes of the graph. Such algorithms are prone to getting stuck in certain subgraphs. We formalize this phenomenon using the bottlenecks in the random walk’s transition probability matrix. We then propose a novel fast-forwarded cover algorithm that can break free from bottlenecks. The core idea is a marginalization argument that leads to a closed-form expression that allows for fast-forwarding to the event of visiting a new node. Unlike many existing approximation algorithms, our algorithm yields exact samples. We demonstrate the enhanced efficiency of the fast-forwarded cover algorithm, and illustrate its application in fitting a Bayesian dendrogram model on a Massachusetts crime and community dataset. 
    more » « less
  5. In this thesis we propose novel estimation techniques for localization and planning problems, which are key challenges in long-term autonomy. We take inspiration in our methods from non-parametric estimation and use tools such as kernel density estimation, non-linear least-squares optimization, binary masking, and random sampling. We show that these methods, by avoiding explicit parametric models, outperform existing methods that use them. Despite the seeming differences between localization and planning, we demonstrate in this thesis that the problems share core structural similarities. When real or simulation-sampled measurements are expensive, noisy, or high variance, non-parametric estimation techniques give higher-quality results in less time. We first address two localization problems. In order to permit localization with a set of ad hoc-placed radios, we propose an ultra-wideband (UWB) graph realization system to localize the radios. Our system achieves high accuracy and robustness by using kernel density estimation for measurement probability densities, by explicitly modeling antenna delays, and by optimizing this combination with a non-linear least squares formulation. Next, in order to then support robotic navigation, we present a flexible system for simultaneous localization and mapping (SLAM) that combines elements from both traditional dense metric SLAM and topological SLAM, using a binary "masking function" to focus attention. This masking function controls which lidar scans are available for loop closures. We provide several masking functions based on approximate topological class detectors. We then examine planning problems in the final chapter and in the appendix. In order to plan with uncertainty around multiple dynamic agents, we describe Monte-Carlo Policy-Tree Decision Making (MCPTDM), a framework for efficiently computing policies in partially-observable, stochastic, continuous problems. MCPTDM composes a sequence of simpler closed-loop policies and uses marginal action costs and particle repetition to improve cost estimates and sample efficiency by reducing variance. Finally, in the appendix we explore Learned Similarity Monte-Carlo Planning (LSMCP), where we seek to enhance the sample efficiency of partially observable Monte Carlo tree search-based planning by taking advantage of similarities in the final outcomes of similar states and actions. We train a multilayer perceptron to learn a similarity function which we then use to enhance value estimates in the planning. Collectively, we show in this thesis that non-parametric methods promote long-term autonomy by reducing error and increasing robustness across multiple domains. 
    more » « less