skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 10:00 PM ET on Friday, December 8 until 2:00 AM ET on Saturday, December 9 due to maintenance. We apologize for the inconvenience.

This content will become publicly available on June 25, 2024

Title: Addressing the Needs of Hispanic/Latino(a) Students with the Flipped Classroom Model
This is a work-in-progress paper. The flipped classroom (FC) model is a well established teaching strategy dating to 1970’s practices in the Soviet Union. FC has two decades of use in post-secondary education since it was proposed by Lage et al. However, breaking studies find no academic improvement with FC model among minority students. Rather, it distances at-risk students. Indeed, certain demographics prefer authoritative over dialogic instruction style. We are motivated to determine FCs effectiveness with students at a medium-sized Hispanic Serving Institution (HSI) and Minority Serving Institution (MSI). For one of our NSF grant activities, we piloted two variations of the flipped classroom model. The key idea is that literature finds that FC classes need better regulation of underperforming students. Generally, the FC models in our work included peer-instruction, active learning, recorded lectures, and pre-assessment quizzes. There were no post-assessment assignments or traditional homework. Some sections employed Just-in-Time-Teaching, and careful selection of groups according to skill (within-class homogenous grouping). Other sections experimented with diversity and inclusion-based grouping and project-based learning. Students at the university are non-traditional, a term used to describe individuals who meet some of the following criteria: having a significant gap between post-secondary education and high-school graduation, being financially independent from their parents, having dependents, and working twenty or more hours per week. 60% of the individuals at our campus are Pell eligible. We study an intersectional inequality: wage-based work is disinclined to accommodate students attending lecture during the work day, and minorities may not prefer dialogic instruction. We analyze student attitudes since Fall 2020, among tens of class sections and hundreds of students. Class sections in the study are upper-division core courses in Computer Science, Computer Engineering and Electrical Engineering. Data is collected from mostly online sections during the COVID-19 pandemic. A pre- and post-surveys were administered collecting demographic information and student attitudes. Hispanic/Latino(a) students found videos to be a complete study medium—that it was not required to seek out third-party materials to prepare for class. They found the class to be more engaging, and self-identified that they could identify previous concepts important to the task at hand. Results were surprising because there were no statistically significant differences with a general population’s exposure to FC. Hispanic/Latino(a)s find the FC model described in our work engaging and effective.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
2023 ASEE Annual Conference & Exposition
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Many historically minoritized graduate students, here defined as Women, Latinx and Black/African American students, in Science, Technology, Engineering and Math (STEM) experience unwelcome or even hostile ecosystems or environments. Many of the social expectations are that historically minoritized graduate students in STEM should assimilate or acclimate to the cultural, where assimilation/acclimation are defined as cultural conformation vs. social acceptance of a student authentic self/identity. They may also experience forms of continuous microaggressions and isolation. The effects of chronic external stressors, such as experiencing discrimination and social isolation, on increased mental health disorders and decreased physiological health is well known [1-3]. Yet, evidence-based practices of support systems specifically for graduate students from historically marginalized communities to reduce the effects of climates of intimidation are not common. Indeed, researchers have found that such students “would benefit if colleges and universities attempted to deconstruct climates of intimidation [4]” and it has also been shown that teaching underrepresented minority students empowerment skills can improve academic success [5]. Self-advocacy originates from the American Counseling Association (ACA) and the Learning Disabilities (LD) communities for effective counseling that promotes academic success and is based on a social justice framework [6]. The underlying principle of self-advocacy is that supporting skills and knowledge development in the three areas of self-advocacy leads to a student’s long term participation and ultimately academic success in areas such as post-secondary education and STEM. The pillars of the self-advocacy program are centered on (i) Empowerment, (ii) Promoting self-awareness and (iii) Social Justice and programming in the GRaduate Education for Academically Talented Students (GREATS) is aligned and repeated along these three pillars. The current professional development program is in its third year of implementation and to date twenty-seven students have participated in the program. This work in progress paper outlines the evaluation of a self-advocacy program for historically marginalized graduate students in STEM at the University of Illinois Chicago is a minority serving institution as both an Hispanic Serving Institution (HSI) and an Asian American Native American Pacific Islander Serving Institution (AANAPISI). [1] S. Stansfeld and B. Candy, "Psychosocial work environment and mental health--a meta-analytic review," ed, 2006. [2] E. M. Smith, "Ethnic minorities: Life stress, social support, and mental health issues," The Counseling Psychologist, vol. 13, no. 4, pp. 537-579, 1985. [3] D. M. Frost, K. Lehavot, and I. H. Meyer, "Minority stress and physical health among sexual minority individuals," Journal of behavioral medicine, vol. 38, no. 1, pp. 1-8, 2015. [4] R. T. Palmer, D. C. Maramba, and T. E. Dancy, "A Qualitative Investigation of Factors Promoting the Retention and Persistence of Students of Color in STEM," The Journal of Negro Education, vol. 80, no. 4, pp. 491-504, 2011. [Online]. Available: [5] A. R. Dowden, "Implementing Self-Advocacy Training Within a Brief Psychoeducational Group to Improve the Academic Motivation of Black Adolescents," The Journal for Specialists in Group Work, vol. 34, no. 2, pp. 118-136, 2009/04/28 2009, doi: 10.1080/01933920902791937. 
    more » « less
  2. Need/Motivation (e.g., goals, gaps in knowledge) The ESTEEM implemented a STEM building capacity project through students’ early access to a sustainable and innovative STEM Stepping Stones, called Micro-Internships (MI). The goal is to reap key benefits of a full-length internship and undergraduate research experiences in an abbreviated format, including access, success, degree completion, transfer, and recruiting and retaining more Latinx and underrepresented students into the STEM workforce. The MIs are designed with the goals to provide opportunities for students at a community college and HSI, with authentic STEM research and applied learning experiences (ALE), support for appropriate STEM pathway/career, preparation and confidence to succeed in STEM and engage in summer long REUs, and with improved outcomes. The MI projects are accessible early to more students and build momentum to better overcome critical obstacles to success. The MIs are shorter, flexibly scheduled throughout the year, easily accessible, and participation in multiple MI is encouraged. ESTEEM also establishes a sustainable and collaborative model, working with partners from BSCS Science Education, for MI’s mentor, training, compliance, and building capacity, with shared values and practices to maximize the improvement of student outcomes. New Knowledge (e.g., hypothesis, research questions) Research indicates that REU/internship experiences can be particularly powerful for students from Latinx and underrepresented groups in STEM. However, those experiences are difficult to access for many HSI-community college students (85% of our students hold off-campus jobs), and lack of confidence is a barrier for a majority of our students. The gap between those who can and those who cannot is the “internship access gap.” This project is at a central California Community College (CCC) and HSI, the only affordable post-secondary option in a region serving a historically underrepresented population in STEM, including 75% Hispanic, and 87% have not completed college. MI is designed to reduce inequalities inherent in the internship paradigm by providing access to professional and research skills for those underserved students. The MI has been designed to reduce barriers by offering: shorter duration (25 contact hours); flexible timing (one week to once a week over many weeks); open access/large group; and proximal location (on-campus). MI mentors participate in week-long summer workshops and ongoing monthly community of practice with the goal of co-constructing a shared vision, engaging in conversations about pedagogy and learning, and sustaining the MI program going forward. Approach (e.g., objectives/specific aims, research methodologies, and analysis) Research Question and Methodology: We want to know: How does participation in a micro-internship affect students’ interest and confidence to pursue STEM? We used a mixed-methods design triangulating quantitative Likert-style survey data with interpretive coding of open-responses to reveal themes in students’ motivations, attitudes toward STEM, and confidence. Participants: The study sampled students enrolled either part-time or full-time at the community college. Although each MI was classified within STEM, they were open to any interested student in any major. Demographically, participants self-identified as 70% Hispanic/Latinx, 13% Mixed-Race, and 42 female. Instrument: Student surveys were developed from two previously validated instruments that examine the impact of the MI intervention on student interest in STEM careers and pursuing internships/REUs. Also, the pre- and post (every e months to assess longitudinal outcomes) -surveys included relevant open response prompts. The surveys collected students’ demographics; interest, confidence, and motivation in pursuing a career in STEM; perceived obstacles; and past experiences with internships and MIs. 171 students responded to the pre-survey at the time of submission. Outcomes (e.g., preliminary findings, accomplishments to date) Because we just finished year 1, we lack at this time longitudinal data to reveal if student confidence is maintained over time and whether or not students are more likely to (i) enroll in more internships, (ii) transfer to a four-year university, or (iii) shorten the time it takes for degree attainment. For short term outcomes, students significantly Increased their confidence to continue pursuing opportunities to develop within the STEM pipeline, including full-length internships, completing STEM degrees, and applying for jobs in STEM. For example, using a 2-tailed t-test we compared means before and after the MI experience. 15 out of 16 questions that showed improvement in scores were related to student confidence to pursue STEM or perceived enjoyment of a STEM career. Finding from the free-response questions, showed that the majority of students reported enrolling in the MI to gain knowledge and experience. After the MI, 66% of students reported having gained valuable knowledge and experience, and 35% of students spoke about gaining confidence and/or momentum to pursue STEM as a career. Broader Impacts (e.g., the participation of underrepresented minorities in STEM; development of a diverse STEM workforce, enhanced infrastructure for research and education) The ESTEEM project has the potential for a transformational impact on STEM undergraduate education’s access and success for underrepresented and Latinx community college students, as well as for STEM capacity building at Hartnell College, a CCC and HSI, for students, faculty, professionals, and processes that foster research in STEM and education. Through sharing and transfer abilities of the ESTEEM model to similar institutions, the project has the potential to change the way students are served at an early and critical stage of their higher education experience at CCC, where one in every five community college student in the nation attends a CCC, over 67% of CCC students identify themselves with ethnic backgrounds that are not White, and 40 to 50% of University of California and California State University graduates in STEM started at a CCC, thus making it a key leverage point for recruiting and retaining a more diverse STEM workforce. 
    more » « less
  3. null (Ed.)
    Abstract Students are more likely to learn in college science, technology, engineering, and math (STEM) classrooms when instructors use teacher discourse moves (TDMs) that encourage student engagement and learning. However, although teaching practices are well studied, TDMs are not well understood in college STEM classrooms. In STEM courses at a minority-serving institution (MSI; n = 74), we used two classroom observation protocols to investigate teaching practices and TDMs across disciplines, instructor types, years of teaching experience, and class size. We found that instructors guide students in active learning activities, but they use authoritative discourse approaches. In addition, chemistry instructors presented more than biology instructors. Also, teaching faculty had relatively high dialogic, interactive discourse, and neither years of faculty teaching experience nor class size had an impact on teaching practices or TDMs. Our results have implications for targeted teaching professional development efforts across instructor and course characteristics to improve STEM education at MSIs. 
    more » « less
  4. The College of Engineering, Computer Science, and Technology (ECST) at California State University, Los Angles, an Hispanic Serving Institution (HSI) with over 60% Hispanic students, is committed to improving graduation rates through the Grad initiative 2025 (the California State University’s initiative to increase graduation rates for all CSU students while eliminating achievement gaps). The majority of our students are under-represented minorities, low-income, Pell-eligible and first generation. Currently, one quarter of the students leaving the major before the second year. Many that “survive” the first two years of math and science do not develop the knowledge and the skills that are needed to succeed in upper division engineering courses, leading to more students unable to finish their engineering majors. Three years ago, we launched a pilot program for the First-Year Experience at ECST (FYrE@ECST) for incoming freshmen. The program focuses on providing academic support for math and physics courses while introducing students to the college community, and comprises a summer bridge program, a hands-on introductory course, cohorted math and science sections, and staff and faculty mentoring. Academic support is provided through peer-led supplemental instruction (SI) workshops. The workshops have led to a significant improvement in student performance in Math, but have had no significant impact in the student performance in physics. Our hypothesis is that students, in addition to having limited understanding of calculus, struggle to understand the fundamental principles of physics and thus cannot apply their knowledge of math to theories in physics to solve problems. This work-in-progress paper describes an inquiry-based hands-on pre-physics course for first-year students as part of the FYrE@ECST program. The course is intended to prepare students for the calculus-based mechanics course in physics and covers about half of the competencies of a classical mechanics course, with focuses on the fundamental concepts of mechanics (i.e. Newton’s Laws, Types of forces, vectors, free-body diagrams, position, velocity and acceleration). Equations are only introduced in the second half of the semester, while the first half is directed to help students develop a deep understanding of these fundamental concepts. During classes, students run simple experiments, watch segments of movies and cartoons and are asked questions (written and orally) which can guide them to think intuitively and critically. A think-pair-share mode of instruction is implemented to promote inquiry and discussion. Students work in groups of five to discuss and solve problems, carry out experiments to better understand processes and systems, and share what they learned with the whole class. The paper presents preliminary results on student achievement. 
    more » « less
  5. Research has shown that student achievement is influenced by their access to, or possession of, various forms of capital. These forms of capital include financial capital, academic capital (prior academic preparation and access to academic support services), cultural capital (the attitudes, knowledge, and behaviors related to education which students are exposed to by members of their family or community), and social capital (the resources students have access to as a result of being members of groups or networks). For community college students, many with high financial need and the first in their families to go to college (especially those from underrepresented minority groups), developing programs to increase access to these various forms of capital is critical to their success. This paper describes how a small federally designated Hispanic-serving community college has developed a scholarship program for financially needy community college students intending to transfer to a four-year institution to pursue a bachelor’s degree in a STEM field. Developed through a National Science Foundation Scholarships in Science, Technology, Engineering, and Mathematics (S-STEM) grant, the program involves a collaboration among STEM faculty, college staff, administrators, student organizations, and partners in industry, four-year institutions, local high schools, and professional organizations. In addition to providing financial support through the scholarships, student access to academic capital is increased through an intensive math review program, tutoring, study groups, supplemental instruction, and research internship opportunities. Access to cultural and social capital is increased by providing scholars with faculty mentors; engaging students with STEM faculty, university researchers, and industry professionals through field trips, summer internships, professional organizations, and student clubs; supporting student and faculty participation at professional conferences, and providing opportunities for students and their families to interact with faculty and staff. The paper details the development of the program, and its impact over the last five years on enhancing the success of STEM students as determined from data on student participation in various program activities, student attitudinal and self-efficacy surveys, and academic performance including persistence, retention, transfer and graduation. 
    more » « less