The advancement of Speech Emotion Recognition (SER) is significantly dependent on the quality of emotional speech corpora used for model training. Researchers in the field of SER have developed various corpora by adjusting design parameters to enhance the reliability of the training source. For this study, we focus on exploring communication modes of collection, specifically analyzing spontaneous emotional speech patterns gathered during conversation or monologue. While conversations are acknowledged as effective for eliciting authentic emotional expressions, systematic analyses are necessary to confirm their reliability as a better source of emotional speech data. We investigate this research question from perceptual differences and acoustic variability present in both emotional speeches. Our analyses on multi-lingual corpora show that, first, raters exhibit higher consistency for conversation recordings when evaluating categorical emotions, and second, perceptions and acoustic patterns observed in conversational samples align more closely with expected trends discussed in relevant emotion literature. We further examine the impact of these differences on SER modeling, which shows that we can train a more robust and stable SER model by using conversation data. This work provides comprehensive evidence suggesting that conversation may offer a better source compared to monologue for developing an SER model.
more »
« less
Monologue versus Conversation: Differences in Emotion Perception and Acoustic Expressivity
Advancing speech emotion recognition (SER) de- pends highly on the source used to train the model, i.e., the emotional speech corpora. By permuting different design parameters, researchers have released versions of corpora that attempt to provide a better-quality source for training SER. In this work, we focus on studying communication modes of collection. In particular, we analyze the patterns of emotional speech collected during interpersonal conversations or monologues. While it is well known that conversation provides a better protocol for eliciting authentic emotion expressions, there is a lack of systematic analyses to determine whether conversational speech provide a “better-quality” source. Specifically, we examine this research question from three perspectives: perceptual differences, acoustic variability and SER model learning. Our analyses on the MSP- Podcast corpus show that: 1) rater’s consistency for conversation recordings is higher when evaluating categorical emotions, 2) the perceptions and acoustic patterns observed on conversations have properties that are better aligned with expected trends discussed in emotion literature, and 3) a more robust SER model can be trained from conversational data. This work brings initial evidences stating that samples of conversations may provide a better-quality source than samples from monologues for building a SER model.
more »
« less
- Award ID(s):
- 2016719
- PAR ID:
- 10441264
- Date Published:
- Journal Name:
- International Conference on Affective Computing and Intelligent Interaction
- Page Range / eLocation ID:
- 1 to 7
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The emotional content of several databases are annotated with continuous-time (CT) annotations, providing traces with frame-by-frame scores describing the instantaneous value of an emotional attribute. However, having a single score describing the global emotion of a short segment is more convenient for several emotion recognition formulations. A common approach is to derive sentence-level (SL) labels from CT annotations by aggregating the values of the emotional traces across time and annotators. How similar are these aggregated SL labels from labels originally collected at the sentence level? The release of the MSP-Podcast (SL annotations) and MSP-Conversation (CT annotations) corpora provides the resources to explore the validity of aggregating SL labels from CT annotations. There are 2,884 speech segments that belong to both corpora. Using this set, this study (1) compares both types of annotations using statistical metrics, (2) evaluates their inter-evaluator agreements, and (3) explores the effect of these SL labels on speech emotion recognition (SER) tasks. The analysis reveals benefits of using SL labels derived from CT annotations in the estimation of valence. This analysis also provides insights on how the two types of labels differ and how that could affect a model.more » « less
-
Speech emotion recognition (SER) is a challenging task due to the limited availability of real-world labeled datasets. Since it is easier to find unlabeled data, the use of self-supervised learning (SSL) has become an attractive alternative. This study proposes new pre-text tasks for SSL to improve SER. While our target application is SER, the proposed pre-text tasks include audio-visual formulations, leveraging the relationship between acoustic and facial features. Our proposed approach introduces three new unimodal and multimodal pre-text tasks that are carefully designed to learn better representations for predicting emotional cues from speech. Task 1 predicts energy variations (high or low) from a speech sequence. Task 2 uses speech features to predict facial activation (high or low) based on facial landmark movements. Task 3 performs a multi-class emotion recognition task on emotional labels obtained from combinations of action units (AUs) detected across a video sequence. We pre-train a network with 60.92 hours of unlabeled data, fine-tuning the model for the downstream SER task. The results on the CREMA-D dataset show that the model pre-trained on the proposed domain-specific pre-text tasks significantly improves the precision (up to 5.1%), recall (up to 4.5%), and F1-scores (up to 4.9%) of our SER system.more » « less
-
Modeling cross-lingual speech emotion recognition (SER) has become more prevalent because of its diverse applications. Existing studies have mostly focused on technical approaches that adapt the feature, domain, or label across languages, without considering in detail the similarities be- tween the languages. This study focuses on domain adaptation in cross-lingual scenarios using phonetic constraints. This work is framed in a twofold manner. First, we analyze emotion-specific phonetic commonality across languages by identifying common vowels that are useful for SER modeling. Second, we leverage these common vowels as an anchoring mechanism to facilitate cross-lingual SER. We consider American English and Taiwanese Mandarin as a case study to demonstrate the potential of our approach. This work uses two in-the-wild natural emotional speech corpora: MSP-Podcast (American English), and BIIC-Podcast (Taiwanese Mandarin). The proposed unsupervised cross-lingual SER model using these phonetical anchors outperforms the baselines with a 58.64% of unweighted average recall (UAR).more » « less
-
It is difficult to achieve robust and well-generalized models for tasks involving subjective concepts such as emotion. It is inevitable to deal with noisy labels, given the ambiguous nature of human perception. Methodologies relying on semi-supervised learning (SSL) and curriculum learning have been proposed to enhance the generalization of the models. This study proposes a novel deep mutual information (DeepMI) metric, built with the SSL pre-trained DeepEmoCluster framework to establish the difficulty of samples. The DeepMI metric quantifies the relationship between the acoustic patterns and emotional attributes (e.g., arousal, valence, and dominance). The DeepMI metric provides a better curriculum, achieving state-of-the-art performance that is higher than results obtained with existing curriculum metrics for speech emotion recognition (SER). We evaluate the proposed method with three emotional datasets in matched and mismatched testing conditions. The experimental evaluations systematically show that a model trained with the DeepMI metric not only obtains competitive generalization performances, but also maintains convergence stability. Furthermore, the extracted DeepMI values are highly interpretable, reflecting information ranks of the training samples.more » « less
An official website of the United States government

