skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Learning Cross-Modal Audiovisual Representations with Ladder Networks for Emotion Recognition
Representation learning is a challenging, but essential task in audiovisual learning. A key challenge is to generate strong cross-modal representations while still capturing discriminative information contained in unimodal features. Properly capturing this information is important to increase accuracy and robustness in audio-visual tasks. Focusing on emotion recognition, this study proposes novel cross-modal ladder networks to capture modality-specific in-formation while building strong cross-modal representations. Our method utilizes representations from a backbone network to implement unsupervised auxiliary tasks to reconstruct intermediate layer representations across the acoustic and visual networks. The skip connections between the cross-modal encoder and decoder provide powerful modality-specific and multimodal representations for emotion recognition. Our model on the CREMA-D corpus achieves high performance with precision, recall, and F1 scores over 80% on a six-class problem.  more » « less
Award ID(s):
1718944
PAR ID:
10441291
Author(s) / Creator(s):
;
Date Published:
Journal Name:
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2023)
Page Range / eLocation ID:
1 to 5
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Emotion recognition is inherently a multimodal problem. Humans use both audible and visual cues to determine a person’s emotions. There has been extensive improvement in the methods we use to fuse audio and visual representations between two unimodal deep-learning models. However, there is a lack of accommodation for modalities that have a disparity in the amount of computational resources needed to provide the same amount of temporal information. As the sequence length increases, current methods often make simplifications such as discarding frames or cropping the sequence. This paper introduces a chunking methodology designed for cross-attention-based multimodal transformer architectures. The approach involves segmenting the visual input—the more computationally demanding modality—into chunks. Cross-attention is then performed between the encoded audio and visual features instead of the original sequence lengths of the unimodal backbones. Our method achieves significant improvements over conventional cross-attention techniques in the audio-visual domain for a six-class emotional recognition problem, demonstrating better F1 score, precision, and recall on the CREMA-D database while reducing computational overhead. 
    more » « less
  2. Learning multimodal representations is a fundamentally complex research problem due to the presence of multiple heterogeneous sources of information. Although the presence of multiple modalities provides additional valuable information, there are two key challenges to address when learning from multimodal data: 1) models must learn the complex intra-modal and cross-modal interactions for prediction and 2) models must be robust to unexpected missing or noisy modalities during testing. In this paper, we propose to optimize for a joint generative-discriminative objective across multimodal data and labels. We introduce a model that factorizes representations into two sets of independent factors: multimodal discriminative and modality-specific generative factors. Multimodal discriminative factors are shared across all modalities and contain joint multimodal features required for discriminative tasks such as sentiment prediction. Modality-specific generative factors are unique for each modality and contain the information required for generating data. Experimental results show that our model is able to learn meaningful multimodal representations that achieve state-of-the-art or competitive performance on six multimodal datasets. Our model demonstrates flexible generative capabilities by conditioning on independent factors and can reconstruct missing modalities without significantly impacting performance. Lastly, we interpret our factorized representations to understand the interactions that influence multimodal learning. 
    more » « less
  3. Human state recognition is a critical topic with pervasive and important applications in human–machine systems. Multimodal fusion, which entails integrating metrics from various data sources, has proven to be a potent method for boosting recognition performance. Although recent multimodal-based models have shown promising results, they often fall short in fully leveraging sophisticated fusion strategies essential for modeling adequate cross-modal dependencies in the fusion representation. Instead, they rely on costly and inconsistent feature crafting and alignment. To address this limitation, we propose an end-to-end multimodal transformer framework for multimodal human state recognition called Husformer. Specifically, we propose using cross-modal transformers, which inspire one modality to reinforce itself through directly attending to latent relevance revealed in other modalities, to fuse different modalities while ensuring sufficient awareness of the cross-modal interactions introduced. Subsequently, we utilize a self-attention transformer to further prioritize contextual information in the fusion representation. Extensive experiments on two human emotion corpora (DEAP and WESAD) and two cognitive load datasets [multimodal dataset for objective cognitive workload assessment on simultaneous tasks (MOCAS) and CogLoad] demonstrate that in the recognition of the human state, our Husformer outperforms both state-of-the-art multimodal baselines and the use of a single modality by a large margin, especially when dealing with raw multimodal features. We also conducted an ablation study to show the benefits of each component in Husformer. Experimental details and source code are available at https://github.com/SMARTlab-Purdue/Husformer. 
    more » « less
  4. Contrastive learning methods, such as CLIP, leverage naturally paired data-for example, images and their corresponding text captions-to learn general representations that transfer efficiently to downstream tasks. While such approaches are generally applied to two modalities, domains such as robotics, healthcare, and video need to support many types of data at once. We show that the pairwise application of CLIP fails to capture joint information between modalities, thereby limiting the quality of the learned representations. To address this issue, we present Symile, a simple contrastive learning approach that captures higher-order information between any number of modalities. Symile provides a flexible, architecture-agnostic objective for learning modality-specific representations. To develop Symile's objective, we derive a lower bound on total correlation, and show that Symile representations for any set of modalities form a sufficient statistic for predicting the remaining modalities. Symile outperforms pairwise CLIP, even with modalities missing in the data, on cross-modal classification and retrieval across several experiments including on an original multilingual dataset of 33M image, text and audio samples and a clinical dataset of chest X-rays, electrocardiograms, and laboratory measurements. All datasets and code used in this work are publicly available. 
    more » « less
  5. Speech emotion recognition (SER) is a challenging task due to the limited availability of real-world labeled datasets. Since it is easier to find unlabeled data, the use of self-supervised learning (SSL) has become an attractive alternative. This study proposes new pre-text tasks for SSL to improve SER. While our target application is SER, the proposed pre-text tasks include audio-visual formulations, leveraging the relationship between acoustic and facial features. Our proposed approach introduces three new unimodal and multimodal pre-text tasks that are carefully designed to learn better representations for predicting emotional cues from speech. Task 1 predicts energy variations (high or low) from a speech sequence. Task 2 uses speech features to predict facial activation (high or low) based on facial landmark movements. Task 3 performs a multi-class emotion recognition task on emotional labels obtained from combinations of action units (AUs) detected across a video sequence. We pre-train a network with 60.92 hours of unlabeled data, fine-tuning the model for the downstream SER task. The results on the CREMA-D dataset show that the model pre-trained on the proposed domain-specific pre-text tasks significantly improves the precision (up to 5.1%), recall (up to 4.5%), and F1-scores (up to 4.9%) of our SER system. 
    more » « less