Representation learning is a challenging, but essential task in audiovisual learning. A key challenge is to generate strong cross-modal representations while still capturing discriminative information contained in unimodal features. Properly capturing this information is important to increase accuracy and robustness in audio-visual tasks. Focusing on emotion recognition, this study proposes novel cross-modal ladder networks to capture modality-specific in-formation while building strong cross-modal representations. Our method utilizes representations from a backbone network to implement unsupervised auxiliary tasks to reconstruct intermediate layer representations across the acoustic and visual networks. The skip connections between the cross-modal encoder and decoder provide powerful modality-specific and multimodal representations for emotion recognition. Our model on the CREMA-D corpus achieves high performance with precision, recall, and F1 scores over 80% on a six-class problem.
more »
« less
This content will become publicly available on April 6, 2026
Efficient Fusion of Computationally Diverse Modalities Using Chunking and Cross-Attention
Emotion recognition is inherently a multimodal problem. Humans use both audible and visual cues to determine a person’s emotions. There has been extensive improvement in the methods we use to fuse audio and visual representations between two unimodal deep-learning models. However, there is a lack of accommodation for modalities that have a disparity in the amount of computational resources needed to provide the same amount of temporal information. As the sequence length increases, current methods often make simplifications such as discarding frames or cropping the sequence. This paper introduces a chunking methodology designed for cross-attention-based multimodal transformer architectures. The approach involves segmenting the visual input—the more computationally demanding modality—into chunks. Cross-attention is then performed between the encoded audio and visual features instead of the original sequence lengths of the unimodal backbones. Our method achieves significant improvements over conventional cross-attention techniques in the audio-visual domain for a six-class emotional recognition problem, demonstrating better F1 score, precision, and recall on the CREMA-D database while reducing computational overhead.
more »
« less
- Award ID(s):
- 2016719
- PAR ID:
- 10655466
- Publisher / Repository:
- IEEE
- Date Published:
- Page Range / eLocation ID:
- 1 to 5
- Format(s):
- Medium: X
- Location:
- Hyderabad, India
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Audio-visual emotion recognition (AVER) has been an important research area in human-computer interaction (HCI). Traditionally, audio-visual emotional datasets and corresponding models derive their ground truths from annotations obtained by raters after watching the audio-visual stimuli. This conventional method, however, neglects the nuanced human perception of emotional states, which varies when annotations are made under different emotional stimuli conditions—whether through unimodal or multimodal stimuli. This study investigates the potential for enhanced AVER system performance by integrating diverse levels of annotation stimuli, reflective of varying perceptual evaluations. We propose a two-stage training method to train models with the labels elicited by audio-only, face-only, and audio-visual stimuli. Our approach utilizes different levels of annotation stimuli according to which modality is present within different layers of the model, effectively modeling annotation at the unimodal and multi-modal levels to capture the full scope of emotion perception across unimodal and multimodal contexts. We conduct the experiments and evaluate the models on the CREMA-D emotion database. The proposed methods achieved the best performances in macro-/weighted-F1 scores. Additionally, we measure the model calibration, performance bias, and fairness metrics considering the age, gender, and race of the AVER systems.more » « less
-
Decades of scientific research have been conducted on developing and evaluating methods for automated emotion recognition. With exponentially growing technology, there is a wide range of emerging applications that require emotional state recognition of the user. This paper investigates a robust approach for multimodal emotion recognition during a conversation. Three separate models for audio, video and text modalities are structured and fine-tuned on the MELD. In this paper, a transformer-based crossmodality fusion with the EmbraceNet architecture is employed to estimate the emotion. The proposed multimodal network architecture can achieve up to 65% accuracy, which significantly surpasses any of the unimodal models. We provide multiple evaluation techniques applied to our work to show that our model is robust and can even outperform the state-of-the-art models on the MELD.more » « less
-
Multimodal depression classification has gained immense popularity over the recent years. We develop a multimodal depression classification system using articulatory coordination features extracted from vocal tract variables and text transcriptions obtained from an automatic speech recognition tool that yields improvements of area under the receiver operating characteristics curve compared to unimodal classifiers (7.5% and 13.7% for audio and text respectively). We show that in the case of limited training data, a segment-level classifier can first be trained to then obtain a session-wise prediction without hindering the performance, using a multi-stage convolutional recurrent neural network. A text model is trained using a Hierarchical Attention Network (HAN). The multimodal system is developed by combining embeddings from the session-level audio model and the HAN text model.more » « less
-
Speech emotion recognition (SER) is a challenging task due to the limited availability of real-world labeled datasets. Since it is easier to find unlabeled data, the use of self-supervised learning (SSL) has become an attractive alternative. This study proposes new pre-text tasks for SSL to improve SER. While our target application is SER, the proposed pre-text tasks include audio-visual formulations, leveraging the relationship between acoustic and facial features. Our proposed approach introduces three new unimodal and multimodal pre-text tasks that are carefully designed to learn better representations for predicting emotional cues from speech. Task 1 predicts energy variations (high or low) from a speech sequence. Task 2 uses speech features to predict facial activation (high or low) based on facial landmark movements. Task 3 performs a multi-class emotion recognition task on emotional labels obtained from combinations of action units (AUs) detected across a video sequence. We pre-train a network with 60.92 hours of unlabeled data, fine-tuning the model for the downstream SER task. The results on the CREMA-D dataset show that the model pre-trained on the proposed domain-specific pre-text tasks significantly improves the precision (up to 5.1%), recall (up to 4.5%), and F1-scores (up to 4.9%) of our SER system.more » « less
An official website of the United States government
