skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Direct tracking of pollen with quantum dots reveals surprising uniformity in dispersal distance across 11 populations of an annual plant
Abstract Premise Pollen movement is a crucial component of dispersal in seed plants. Although pollen dispersal is well studied, methodological constraints have made it challenging to directly track pollen flow within multiple populations across landscapes. We labeled pollen with quantum dots, a new technique that overcomes past limitations, to evaluate the spatial scale of pollen dispersal and its relationship with conspecific density within 11 populations of Clarkia xantiana subsp. xantiana , a bee‐pollinated annual plant. Methods We used experimental arrays in two years to track pollen movement across distances of 5–35 m within nine populations and across distances of 10–70 m within two additional populations. We tested for distance decay of pollen dispersal, whether conspecific density modulated dispersal distance, and whether dispersal kernels varied among populations across an environmentally complex landscape. Results Labeled pollen receipt did not decline with distance over 35 m within eight of nine populations or over 70 m within either of two populations. Pollen receipt increased with conspecific density. Overall, dispersal kernels were consistent across populations. Conclusions The surprising uniformity in dispersal distance within different populations was likely influenced by low precipitation and plant density in our study years. This suggests that spatiotemporal variation in the abiotic environment substantially influences the extent of gene flow within and among populations.  more » « less
Award ID(s):
1754026 1754246
PAR ID:
10441315
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
American Journal of Botany
Volume:
110
Issue:
7
ISSN:
0002-9122
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Flowering plants do not occur alone and often grow in mixed-species communities where pollinator sharing is high and interactions via pollinators can occur at pre- and post-pollination stages. While the causes and consequences of pre-pollination interactions have been well studied little is known about post-pollination interactions via heterospecific pollen (HP) receipt, and even less about the evolutionary implications of these interactions. In particular, the degree to which plants can evolve tolerance mechanisms to the negative effects of HP receipt has received little attention. Here, we aim to fill this gap in our understanding of post-pollination interactions by experimentally testing whether two co-flowering Clarkia species can evolve HP tolerance, and whether tolerance to specific HP ‘genotypes’ (fine-scale local adaptation to HP) occurs. We find that Clarkia species vary in their tolerance to HP effects. Furthermore, conspecific pollen performance and the magnitude of HP effects were related to the recipient's history of exposure to HP in C. xantiana but not in C. speciosa. Specifically, better conspecific pollen performance and smaller HP effects were observed in populations of C. xantiana plants with previous exposure to HP compared to populations without such exposure. These results suggest that plants may have the potential to evolve tolerance mechanisms to HP effects but that these may occur not from the female (stigma, style) but from the male (pollen) perspective, a possibility that is often overlooked. We find no evidence for fine-scale local adaptation to HP receipt. Studies that evaluate the adaptive potential of plants to the negative effects of HP receipt are an important first step in understanding the evolutionary consequences of plant–plant post-pollination interactions. Such knowledge is in turn crucial for deciphering the role of plant–pollinator interactions in driving floral evolution and the composition of co-flowering communities. 
    more » « less
  2. Abstract The ecological dynamics of co‐flowering communities are largely mediated by pollinators. However, current understanding of pollinator‐mediated interactions primarily relies on how co‐flowering plants influence attraction of shared pollinators, and much less is known about plant–plant interactions that occur via heterospecific pollen (HP) transfer. Invaded communities in particular can be highly affected by the transfer of alien pollen, but the strength, drivers and fitness consequences of these interactions at a community scale are not well understood.Here we analyse HP transfer networks in nine coastal communities in the Yucatan Mexico that vary in the relative abundance of invasive flowers to evaluate how HP donation and receipt varies between native and alien plants. We further evaluate whether HP donation and receipt are mediated by floral traits (e.g. display, flower size) or pollinator visitation rate. Finally, we evaluated whether post‐pollination success (proportion of pollen tubes produced) was affected by alien HP receipt and whether the effect varied between native and alien recipients.HP transfer networks exhibit relatively high connectance (c. 15%), suggesting high HP transfer within the studied communities. Significant network nestedness further suggests the existence of species that predominantly act as HP donors or recipients in the community. Species‐level analyses showed that natives receive 80% more HP compared to alien species, and that alien plants donate 40% more HP than natives. HP receipt and donation were mediated by different floral traits and such effects were independent of plant origin (native or alien). The proportion of alien HP received significantly affected conspecific pollen tube success in natives, but not that of alien species.Synthesis. Our results suggest that HP transfer in invaded communities is widespread, and that native and alien species play different roles within HP transfer networks, which are mediated by a different suite of floral traits. Alien species, in particular, play a central role as HP donors and are more tolerant to HP receipt than natives—a finding that points to two overlooked mechanisms facilitating alien plant invasion and success within native co‐flowering communities. 
    more » « less
  3. Abstract Winter annuals comprise a large fraction of warm-desert plant species, but the drivers of their diversity are little understood. One factor that has generally been overlooked is the lack of obvious means of long-distance seed dispersal in many desert-annual lineages, which could lead to genetic differentiation at small spatial scales and, ultimately, to speciation and narrow endemism. If our gene-flow hypothesis is correct, individual winter-annual species should have populations with genetic spatial structures implying short distances of gene flow. To test this idea, we sampled six populations of Eschscholzia parishii (Papaveraceae) in three pairs of watersheds within a 28-km radius in southern California. We quantified genetic diversity and structure and inferred the distance of gene flow in these populations using single nucleotide polymorphisms derived from genotyping-by-sequencing. Estimated distances of gene flow were quite small (σ = 10.4–14.9 m), with strong genetic structure observed within and between populations. Kinship declined steeply with ln distance (r2 = 0.85). Petal size and shape differed significantly between the northernmost and southernmost populations. These findings support the hypothesis that the high diversity of warm-desert winter annuals might result, in part, from genetic differentiation within species at small spatial scales driven by poor seed dispersal. 
    more » « less
  4. Abstract Movement behavior is central to understanding species distributions, population dynamics and coexistence with other species. Although the relationship between conspecific density and emigration has been well studied, little attention has been paid to how interspecific competitor density affects another species' movement behavior. We conducted releases of two species of competingTriboliumflour beetles at different densities, alone and together in homogeneous microcosms, and tested whether their recaptures‐with‐distance were well described by a random‐diffusion model. We also determined whether mean displacement distances varied with the release density of conspecific and heterospecific beetles. A diffusion model provided a good fit to the redistribution ofT. castaneumandT. confusumat all release densities, explaining an average of >60% of the variation in recaptures. For both species, mean displacement (directly proportional to the diffusion rate) exhibited a humped‐shaped relationship with conspecific density. Finally, we found that both species of beetle impacted the within‐patch movement rates of the other species, but the effect depended on density. ForT. castaneumin the highest density treatment, the addition of equal numbers ofT. castaneumorT. confusumhad the same effect, with mean displacements reduced by approximately one half. The same result occurred forT. confusumreleased at an intermediate density. In both cases, it was total beetle abundance, not species identity that mattered to mean displacement. We suggest that displacement or diffusion rates that exhibit a nonlinear relationship with density or depend on the presence or abundance of interacting species should be considered when attempting to predict the spatial spread of populations or scaling up to heterogeneous landscapes. 
    more » « less
  5. Abstract PurposeTrailing-edge populations at the low-latitude, receding edge of a shifting range face high extinction risk from climate change unless they are able to track optimal environmental conditions through dispersal. MethodsWe fit dispersal models to the locations of 3165 individually-marked black-throated blue warblers (Setophaga caerulescens) in the southern Appalachian Mountains in North Carolina, USA from 2002 to 2023. Black-throated blue warbler breeding abundance in this population has remained relatively stable at colder and wetter areas at higher elevations but has declined at warmer and drier areas at lower elevations. ResultsMedian dispersal distance of young warblers was 917 m (range 23–3200 m), and dispersal tended to be directed away from warm and dry locations. In contrast, adults exhibited strong site fidelity between breeding seasons and rarely dispersed more than 100 m (range 10–1300 m). Consequently, adult dispersal kernels were much more compact and symmetric than natal dispersal kernels, suggesting adult dispersal is unlikely a driving force of declines in this population. ConclusionOur findings suggest that directional natal dispersal may mitigate fitness costs for trailing-edge populations by allowing individuals to track changing climate and avoid warming conditions at warm-edge range boundaries. 
    more » « less