skip to main content


Title: Mitonuclear discordance results from incomplete lineage sorting, with no detectable evidence for gene flow, in a rapid radiation of Todiramphus kingfishers
Abstract

Many organisms possess multiple discrete genomes (i.e. nuclear and organellar), which are inherited separately and may have unique and even conflicting evolutionary histories. Phylogenetic reconstructions from these discrete genomes can yield different patterns of relatedness, a phenomenon known as cytonuclear discordance. In many animals, mitonuclear discordance (i.e. discordant evolutionary histories between the nuclear and mitochondrial genomes) has been widely documented, but its causes are often considered idiosyncratic and inscrutable. We show that a case of mitonuclear discordance inTodiramphuskingfishers can be explained by extensive genome‐wide incomplete lineage sorting (ILS), likely a result of the explosive diversification history of this genus. For these kingfishers, quartet frequencies reveal that the nuclear genome is dominated by discordant topologies, with none of the internal branches in our consensus nuclear tree recovered in >50% of genome‐wide gene trees. Meanwhile, a lack of inter‐species shared ancestry, non‐significant pairwise tests for gene flow, and little evidence for meaningful migration edges between species, leads to the conclusion that gene flow cannot explain the mitonuclear discordance we observe. This lack of evidence for gene flow combined with evidence for extensive genome‐wide gene tree discordance, a hallmark of ILS, leads us to conclude that the mitonuclear discordance we observe likely results from ILS, specifically deep coalescence of the mitochondrial genome. Based on this case study, we hypothesize that similar demographic histories in other ‘great speciator’ taxa across the Indo‐Pacific likely predispose these groups to high levels of ILS and high likelihoods of mitonuclear discordance.

 
more » « less
Award ID(s):
2112467
PAR ID:
10441319
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Molecular Ecology
Volume:
32
Issue:
17
ISSN:
0962-1083
Page Range / eLocation ID:
p. 4844-4862
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Phylogenomic data from a rapidly increasing number of studies provide new evidence for resolving relationships in recently radiated clades, but they also pose new challenges for inferring evolutionary histories. Most existing methods for reconstructing phylogenetic hypotheses rely solely on algorithms that only consider incomplete lineage sorting (ILS) as a cause of intra- or intergenomic discordance. Here, we utilize a variety of methods, including those to infer phylogenetic networks, to account for both ILS and introgression as a cause for nuclear and cytoplasmic-nuclear discordance using phylogenomic data from the recently radiated flowering plant genus Polemonium (Polemoniaceae), an ecologically diverse genus in Western North America with known and suspected gene flow between species. We find evidence for widespread discordance among nuclear loci that can be explained by both ILS and reticulate evolution in the evolutionary history of Polemonium. Furthermore, the histories of organellar genomes show strong discordance with the inferred species tree from the nuclear genome. Discordance between the nuclear and plastid genome is not completely explained by ILS, and only one case of discordance is explained by detected introgression events. Our results suggest that multiple processes have been involved in the evolutionary history of Polemonium and that the plastid genome does not accurately reflect species relationships. We discuss several potential causes for this cytoplasmic-nuclear discordance, which emerging evidence suggests is more widespread across the Tree of Life than previously thought. [Cyto-nuclear discordance, genomic discordance, phylogenetic networks, plastid capture, Polemoniaceae, Polemonium, reticulations.] 
    more » « less
  2. Kubatko, Laura (Ed.)
    Abstract Evidence from natural systems suggests that hybridization between animal species is more common than traditionally thought, but the overall contribution of introgression to standing genetic variation within species remains unclear for most animal systems. Here, we use targeted exon capture to sequence thousands of nuclear loci and complete mitochondrial genomes from closely related chipmunk species in the Tamias quadrivittatus group that are distributed across the Great Basin and the central and southern Rocky Mountains of North America. This recent radiation includes six overlapping, ecologically distinct species (Tamias canipes, Tamias cinereicollis, Tamias dorsalis, T. quadrivittatus, Tamias rufus, and Tamias umbrinus) that show evidence for widespread introgression across species boundaries. Such evidence has historically been derived from a handful of markers, typically focused on mitochondrial loci, to describe patterns of introgression; consequently, the extent of introgression of nuclear genes is less well characterized. We conducted a series of phylogenomic and species-tree analyses to resolve the phylogeny of six species in this group. In addition, we performed several population-genomic analyses to characterize nuclear genomes and infer coancestry among individuals. Furthermore, we used emerging quartets-based approaches to simultaneously infer the species tree (SVDquartets) and identify introgression (HyDe). We found that, in spite of rampant introgression of mitochondrial genomes between some species pairs (and sometimes involving up to three species), there appears to be little to no evidence for nuclear introgression. These findings mirror other genomic results where complete mitochondrial capture has occurred between chipmunk species in the absence of appreciable nuclear gene flow. The underlying causes of recurrent massive cytonuclear discordance remain unresolved in this group but mitochondrial DNA appears highly misleading of population histories as a whole. Collectively, it appears that chipmunk species boundaries are largely impermeable to nuclear gene flow and that hybridization, while pervasive with respect to mtDNA, has likely played a relatively minor role in the evolutionary history of this group. [Cytonuclear discordance; hyridization; introgression, phylogenomics; SVDquartets; Tamias.] 
    more » « less
  3. Introgression can produce novel genetic variation in organisms that hybridize. Sympatric species pairs in the carnivorous plant genusSarraceniaL. frequently hybridize, and all known hybrids are fertile. Despite being a desirable system for studying the evolutionary consequences of hybridization, the extent to which introgression occurs in the genus is limited to a few species in only two field sites. Previous phylogenomic analysis ofSarraceniaestimated a highly resolved species tree from 199 nuclear genes, but revealed a plastid genome that is highly discordant with the species tree. Such cytonuclear discordance could be caused by chloroplast introgression (i.e. chloroplast capture) or incomplete lineage sorting (ILS). To better understand the extent to which introgression is occurring inSarracenia, the chloroplast capture and ILS hypotheses were formally evaluated. Plastomes were assembledde-novofrom sequencing reads generated from 17 individuals in addition to reads obtained from the previous study. Assemblies of 14 whole plastomes were generated and annotated, and the remaining fragmented assemblies were scaffolded to these whole-plastome assemblies. Coding sequence from 79 homologous genes were aligned and concatenated for maximum-likelihood phylogeny estimation. The plastome tree is extremely discordant with the published species tree. Plastome trees were simulated under the coalescent and tree distance from the species tree was calculated to generate a null distribution of discordance that is expected under ILS alone. A t-test rejected the null hypothesis that ILS could cause the level of discordance seen in the plastome tree, suggesting that chloroplast capture must be invoked to explain the discordance. Due to the extreme level of discordance in the plastome tree, it is likely that chloroplast capture has been common in the evolutionary history ofSarracenia.

     
    more » « less
  4. Abstract

    Hybridization, introgression, and reciprocal gene flow during speciation, specifically the generation of mitonuclear discordance, are increasingly observed as parts of the speciation process. Genomic approaches provide insight into where, when, and how adaptation operates during and after speciation and can measure historical and modern introgression. Whether adaptive or neutral in origin, hybridization can cause mitonuclear discordance by placing the mitochondrial genome of one species (or population) in the nuclear background of another species. The latter, introgressed species may eventually have its own mtDNA replaced or “captured” by other species across its entire geographical range. Intermediate stages in the capture process should be observable. Two nonsister species of Australasian monarch‐flycatchers, Spectacled Monarch (Symposiachrus trivirgatus) mostly of Australia and Indonesia and Spot‐winged Monarch (S. guttula) of New Guinea, present an opportunity to observe this process. We analysed thousands of single nucleotide polymorphisms (SNPs) derived from ultraconserved elements of all subspecies of both species. Mitochondrial DNA sequences of Australian populations ofS. trivirgatusform two paraphyletic clades, one being sister to and presumably introgressed byS. guttuladespite little nuclear signal of introgression. Population genetic analyses (e.g., tests for modern and historical gene flow and selection) support at least one historical gene flow event betweenS. guttulaand AustralianS. trivirgatus. We also uncovered introgression from the Maluku Islands subspecies ofS. trivirgatusinto an island population ofS. guttula, resulting in apparent nuclear paraphyly. We find that neutral demographic processes, not adaptive introgression, are the most likely cause of these complex population histories. We suggest that a Pleistocene extinction ofS. guttulafrom mainland Australia resulted from range expansion byS. trivirgatus.

     
    more » « less
  5. Phylogenetic comparative methods have long been a mainstay of evolutionary biology, allowing for the study of trait evolution across species while accounting for their common ancestry. These analyses typically assume a single, bifurcating phylogenetic tree describing the shared history among species. However, modern phylogenomic analyses have shown that genomes are often composed of mosaic histories that can disagree both with the species tree and with each other—so-called discordant gene trees. These gene trees describe shared histories that are not captured by the species tree, and therefore that are unaccounted for in classic comparative approaches. The application of standard comparative methods to species histories containing discordance leads to incorrect inferences about the timing, direction, and rate of evolution. Here, we develop two approaches for incorporating gene tree histories into comparative methods: one that constructs an updated phylogenetic variance–covariance matrix from gene trees, and another that applies Felsenstein's pruning algorithm over a set of gene trees to calculate trait histories and likelihoods. Using simulation, we demonstrate that our approaches generate much more accurate estimates of tree-wide rates of trait evolution than standard methods. We apply our methods to two clades of the wild tomato genusSolanumwith varying rates of discordance, demonstrating the contribution of gene tree discordance to variation in a set of floral traits. Our approaches have the potential to be applied to a broad range of classic inference problems in phylogenetics, including ancestral state reconstruction and the inference of lineage-specific rate shifts. 
    more » « less