skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Remotely sensed environmental measurements detect decoupled processes driving population dynamics at contrasting scales
Abstract The increasing availability of satellite imagery has supported a rapid expansion in forward‐looking studies seeking to track and predict how climate change will influence wild population dynamics. However, these data can also be used in retrospect to provide additional context for historical data in the absence of contemporaneous environmental measurements. We used 167 Landsat‐5 Thematic Mapper (TM) images spanning 13 years to identify environmental drivers of fitness and population size in a well‐characterized population of banner‐tailed kangaroo rats (Dipodomys spectabilis) in the southwestern United States. We found evidence of two decoupled processes that may be driving population dynamics in opposing directions over distinct time frames. Specifically, increasing mean surface temperature corresponded to increased individual fitness, where fitness is defined as the number of offspring produced by a single individual. This result contrasts with our findings for population size, where increasing surface temperature led to decreased numbers of active mounds. These relationships between surface temperature and (i) individual fitness and (ii) population size would not have been identified in the absence of remotely sensed data, indicating that such information can be used to test existing hypotheses and generate new ecological predictions regarding fitness at multiple spatial scales and degrees of sampling effort. To our knowledge, this study is the first to directly link remotely sensed environmental data to individual fitness in a nearly exhaustively sampled population, opening a new avenue for incorporating remote sensing data into eco‐evolutionary studies.  more » « less
Award ID(s):
2010251
PAR ID:
10441329
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecology and Evolution
Volume:
13
Issue:
8
ISSN:
2045-7758
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Emperor penguins (Aptenodytes forsteri) are under increasing environmental pressure. Monitoring colony size and population trends of this Antarctic seabird relies primarily on satellite imagery recorded near the end of the breeding season, when light conditions levels are sufficient to capture images, but colony occupancy is highly variable. To correct population estimates for this variability, we develop a phenological model that can predict the number of breeding pairs and fledging chicks, as well as key phenological events such as arrival, hatching and foraging times, from as few as six data points from a single season. The ability to extrapolate occupancy from sparse data makes the model particularly useful for monitoring remotely sensed animal colonies where ground-based population estimates are rare or unavailable. 
    more » « less
  2. Abstract Boreal forests of Alaska and Western Canada are experiencing rapid climate change characterized by higher temperatures, more extreme droughts, and changing disturbance regimes, resulting in forest mortality and composition changes. Mechanistic models are increasingly important for predicting future forest trends as the region experiences novel environmental change. Previously, many process-based models have generated starting conditions by ‘spinning up’ to equilibrium. However, setting appropriate initial conditions remains a persistent challenge in using mechanistic forest models, where stochastic events and latent parameters governing tree establishment have long-lasting impacts on simulation outcomes. Recent advances in remote sensing analysis provide information that can help address this issue. We updated an individual-based gap model, the University of Virginia Forest Model Enhanced (UVAFME), to include initial conditions derived from aerial and satellite imagery at two locations. Following these updates, material legacies (e.g. trees, seed banks, soil organic layer) allowed new forest types to persist in UVAFME simulations, landscape-level forest heterogeneity increased, and forest-wide biomass estimates increased. At both study sites, initialization from remotely sensed data had a strong impact on forest cover and volume. Climate change impacts were simulated decades earlier than when the model was ‘spun up’. In Alaska’s Tanana Valley State Forest, warmer climate scenarios drove deciduous expansion, increased drought stress, and resulted in a 28% decrease in overall biomass by 2100 between historical and high emissions climate scenarios. At a lowland site in Northern British Columbia, lodgepole pine(Pinus contorta)remained dominant and became more productive with exogenous climate forcing as temperature, nutrient, and flooding limitations decreased. These case studies demonstrate a new framework for forest modeling and emphasize the advantages of integrating remotely sensed data with mechanistic models, thereby laying groundwork for future research that explores near-term impacts of non-stationary ecological change. 
    more » « less
  3. Abstract Functional traits affect the demographic performance of individuals in their environment, leading to fitness differences that scale up to drive population dynamics and community assembly. Understanding the links between traits and fitness is, therefore, critical for predicting how populations and communities respond to environmental change. However, the net effects of traits on species fitness are largely unknown because we have lacked a framework for estimating fitness across multiple species and environments.We present a modelling framework that integrates trait effects on demographic performance over the life cycles of individuals to estimate the net effect of traits on species fitness. This approach involves (1) modelling trait effects on individual demographic rates (growth, survival and recruitment) as multidimensional performance surfaces that vary with individual size and environment and (2) integrating these effects into a population model to project population growth rates (i.e., fitness) as a function of traits and environment. We illustrate our approach by estimating performance surfaces and fitness landscapes for trees across a temperature gradient in the eastern United States.Functional traits (wood density, specific leaf area and maximum height) interacted with individual size and temperature to influence tree growth, survival and recruitment rates, generating demographic trade‐offs and shaping the contours of fitness landscapes. Tall tree species had high survival, growth and fitness across the temperature gradient. Wood density and specific leaf area had interactive effects on demographic performance, resulting in fitness landscapes with multiple peaks.With this approach it is now possible to empirically estimate the net effect of traits on fitness, leading to an improved understanding of the selective forces that drive community assembly and permitting generalizable predictions of population and community dynamics in changing environments. 
    more » « less
  4. Abstract A fundamental goal of ecology is to understand how the physical environment influences intraspecific variability in life history and, consequently, fitness. In streams, discharge and associated habitat conditions change along a continuum from intermittency to permanence: Headwater streams typically have smaller watersheds and are thus more prone to drying than higher‐order streams with larger watersheds and more consistent discharge. However, few empirical studies have assessed life history and associated population responses to this continuum in aquatic organisms. We tested the prediction that individual growth, rate of development, and population growth increase with watershed area in the long‐lived stream salamanderGyrinophilus porphyriticus, where we use watershed area as a proxy for hydrologic intermittence. To address this hypothesis, we used 8 years of mark–recapture data from 53 reaches across 10 headwater streams in New Hampshire, USA. Individual growth rates and mean size at metamorphosis increased with watershed area for watersheds from 0.12 to 1.66 km2. Population growth rates increased with watershed area; however, this result was not statistically significant at our sample size. Mean age of metamorphosis did not vary across watershed areas. Lower individual growth rates and smaller sizes at metamorphosis likely contributed to reduced lifetime fecundity and population growth in reaches with the smallest watershed areas and highest vulnerability to drought. These responses suggest that as droughts increase due to climate change, headwater specialists in hydrologically intermittent environments will experience a reduction in fitness due to smaller body sizes or other growth‐related mechanisms. 
    more » « less
  5. Nutrient composition varies greatly across landscapes, influencing the spatiotemporal dynamics of populations. However, few studies have explored this pattern across multiple scales. We tested how nutrient limitation affects herbivore populations, from individual behavior to landscape‐level dynamics, using the Australian plague locustChortoicetes terminifera. Our study combined field populations and long‐term survey data across their range. At the individual level, juvenile locusts selected a carbohydrate‐biased intake target of 1 protein (p) to 2 carbohydrate (c) and exhibited the highest growth rates and shortest development times when fed artificial diets matching this 1p:2c ratio during their final juvenile instar. In the field, locusts exposed to protein‐biased plants corrected their nutritional imbalance by initially selecting carbohydrate‐heavy diets (up to a 1p:20c ratio). Over a week after removal from the protein‐rich environment, they returned to the 1p:2c intake target once the deficiency was balanced. At the landscape level, locust outbreaks were negatively correlated with soil nitrogen and exhibited a non‐linear relationship with soil phosphorus, peaking at approximately 4% phosphorus content. By disentangling the interaction between mean annual precipitation and soil nitrogen, using comprehensive locust surveys and remotely sensed soil and weather data spanning decades, we show how environmental factors drive population dynamics. This study integrates lab, field and remote sensing approaches, highlighting the importance of nutrient balancing across scales for herbivores. Specifically, we demonstrate that low‐nitrogen environments promote locust outbreaks, likely by reducing plant protein‐to‐carbohydrate ratios. Incorporating soil quality data into locust plague forecasting models could significantly improve prediction accuracy. 
    more » « less