Abstract Precipitation of relativistic electrons into the Earth's atmosphere regulates the outer radiation belt fluxes and contributes to magnetosphere‐atmosphere coupling. One of the main drivers of such precipitation is electron scattering by whistler‐mode waves. Such waves typically originate at the equator, where they can resonate with and scatter sub‐relativistic (tens to a few hundred keV) electrons. However, they can occasionally propagate far away from the equator along field lines, reaching middle latitudes, where they can resonate with and scatter relativistic (>500 keV) electrons. Such a propagation is typical for the dayside, but statistically has not been found on the nightside where the waves are quickly damped along their propagation due to Landau damping. Here we explore two events of relativistic electron precipitation from low‐altitude observations on the nightside. Combining measurements of whistler‐mode waves from ground observatories, relativistic electron precipitation from low‐altitude satellites, total electron content maps from GPS receivers, and magnetic field and electron flux from equatorial satellites, we show wave ducting by plasma density gradients is the possible channel that allows the waves to reach middle latitudes and scatter relativistic electrons. We suggest that both whistler‐mode wave generation and ducting can be driven by equatorial mesoscale (with spatial scales of about one Earth radius) transient structures during nightside injections. We also compare these nightside events with observations of ducted waves and relativistic electron precipitation at the dayside, where wave generation and ducting are driven by ultra‐low‐frequency waves. This study demonstrates the potential importance of mesoscale transients in relativistic electron precipitation, but does not however unequivocally establish that ducted whistler‐mode waves are the primary cause of the observed electron precipitation.
more »
« less
Investigating Whistler‐Mode Wave Intensity Along Field Lines Using Electron Precipitation Measurements
Abstract Electron fluxes in Earth's radiation belts are significantly affected by their resonant interaction with whistler‐mode waves. This wave‐particle interaction often occurs via first cyclotron resonance and, when intense and nonlinear, can accelerate subrelativistic electrons to relativistic energies while also scattering them into the atmospheric loss cone. Here, we model Electron Losses and Fields INvestgation’s (ELFIN) low‐altitude satellite measurements of precipitating electron spectra with a wave‐electron interaction model to infer the profiles of whistler‐mode intensity along magnetic latitude assuming realistic waveforms and statistical models of plasma density. We then compare these profiles with a wave power spatial distribution along field lines from an empirical model. We find that this empirical model is consistent with observations of subrelativistic (<200 keV) electron precipitation events, but deviates significantly for relativistic (>200 keV) electron precipitation events at allMLTs, especially on the nightside. This may be due to the sparse coverage of wave measurements at mid‐to‐high latitudes which causes statistically averaged wave power to be likely underestimated in current empirical wave models. As a result, this discrepancy suggests that intense waves likely do propagate to higher latitudes, although further investigation is required to quantify how well this high‐latitude population can account for the observed relativistic electron precipitation.
more »
« less
- Award ID(s):
- 2019914
- PAR ID:
- 10441335
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Space Physics
- Volume:
- 128
- Issue:
- 8
- ISSN:
- 2169-9380
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Energetic electron precipitation into Earth's atmosphere is an important process for radiation belt dynamics and magnetosphere‐ionosphere coupling. The most intense form of such precipitation is microbursts—short‐lived bursts of precipitating fluxes detected on low‐altitude spacecraft. Due to the wide energy range of microbursts (from sub‐relativistic to relativistic energies) and their transient nature, they are thought to be predominantly associated with energetic electron scattering into the loss cone via cyclotron resonance with field‐aligned intense whistler‐mode chorus waves. In this study, we show that intense sub‐relativistic microbursts may be generated via electron nonlinear Landau resonance with very oblique whistler‐mode waves. We combine a theoretical model of nonlinear Landau resonance, equatorial observations of intense very oblique whistler‐mode waves, and conjugate low‐altitude observations of <200 keV electron precipitation. Based on model comparison with observed precipitation, we suggest that such sub‐relativistic microbursts occur by plasma sheet (0.1 − 10 keV) electron trapping in nonlinear Landau resonance, resulting in acceleration to ≲200 keV energies and simultaneous transport into the loss cone. The proposed scenario of intense sub‐relativistic (≲200 keV) microbursts demonstrates the importance of very oblique whistler‐mode waves for radiation belt dynamics.more » « less
-
Abstract The two most important wave modes responsible for energetic electron scattering to the Earth's ionosphere are electromagnetic ion cyclotron (EMIC) waves and whistler‐mode waves. These wave modes operate in different energy ranges: whistler‐mode waves are mostly effective in scattering sub‐relativistic electrons, whereas EMIC waves predominately scatter relativistic electrons. In this study, we report the direct observations of energetic electron (from 50 keV to 2.5 MeV) scattering driven by the combined effect of whistler‐mode and EMIC waves using ELFIN measurements. We analyze five events showing EMIC‐driven relativistic electron precipitation accompanied by bursts of whistler‐driven precipitation over a wide energy range. These events reveal an enhancement of relativistic electron precipitation by EMIC waves during intervals of whistler‐mode precipitation compared to intervals of EMIC‐only precipitation. We discuss a possible mechanism responsible for such precipitation. We suggest that below the minimum resonance energy (Emin) of EMIC waves, the whistler‐mode wave may both scatter electrons into the loss‐cone and accelerate them to higher energy (1–3 MeV). Electrons accelerated aboveEminresonate with EMIC waves that, in turn, quickly scatter those electrons into the loss‐cone. This enhances relativistic electron precipitation beyond what EMIC waves alone could achieve. We present theoretical support for this mechanism, along with observational evidence from the ELFIN mission. We discuss methodologies for further observational investigations of this combined whistler‐mode and EMIC precipitation.more » « less
-
Abstract Resonant interactions of energetic electrons with electromagnetic whistler‐mode waves (whistlers) contribute significantly to the dynamics of electron fluxes in Earth's outer radiation belt. At low geomagnetic latitudes, these waves are very effective in pitch angle scattering and precipitation into the ionosphere of low equatorial pitch angle, tens of keV electrons and acceleration of high equatorial pitch angle electrons to relativistic energies. Relativistic (hundreds of keV), electrons may also be precipitated by resonant interaction with whistlers, but this requires waves propagating quasi‐parallel without significant intensity decrease to high latitudes where they can resonate with higher energy low equatorial pitch angle electrons than at the equator. Wave propagation away from the equatorial source region in a non‐uniform magnetic field leads to ray divergence from the originally field‐aligned direction and efficient wave damping by Landau resonance with suprathermal electrons, reducing the wave ability to scatter electrons at high latitudes. However, wave propagation can become ducted along field‐aligned density peaks (ducts), preventing ray divergence and wave damping. Such ducting may therefore result in significant relativistic electron precipitation. We present evidence that ducted whistlers efficiently precipitate relativistic electrons. We employ simultaneous near‐equatorial and ground‐based measurements of whistlers and low‐altitude electron precipitation measurements by ELFIN CubeSat. We show that ducted waves (appearing on the ground) efficiently scatter relativistic electrons into the loss cone, contrary to non‐ducted waves (absent on the ground) precipitating onlykeV electrons. Our results indicate that ducted whistlers may be quite significant for relativistic electron losses; they should be further studied statistically and possibly incorporated in radiation belt models.more » « less
-
Abstract Electron losses from the outer radiation belt are typically attributed to resonant electron scattering by whistler‐mode waves. Although the quasi‐linear diffusive regime of such scattering is well understood, the observed waves are often quite intense and in the nonlinear regime of resonant wave‐particle interaction. Such nonlinear resonant interactions are still being actively studied due to their potential for driving fast precipitation. However, direct observations of nonlinear resonance of whistler‐mode waves with electron distributions are scarce. Here, we present evidence for such resonance with high‐resolution electron energy and pitch angle spectra acquired at low‐altitudes by the dual Electron Losses and Fields INvestgation (ELFIN) CubeSats combined with conjugate measurements of equatorial plasma parameters, wave properties, and electron energy spectra by the Time History of Events and Macroscale Interactions during Substorms and Magnetospheric MultiScale missions. ELFIN has obtained numerous conjunction events exhibiting whistler wave driven precipitation; in this study, we present two such events which epitomize signatures of nonlinear resonant scattering. A test particle simulation of electron interactions with intense whistler‐mode waves prescribed at the equator is employed to directly compare modeled precipitation spectra with ELFIN observations. We show that the observed precipitating spectra match expectations to within observational uncertainties of wave amplitude for reasonable assumptions of wave power distribution along the magnetic field line. These results indicate the importance of nonlinear resonant effects when describing intense precipitation patterns of energetic electrons and open the possibility of remotely investigating equatorial wave properties using just properties of precipitation energy and pitch angle spectra.more » « less
An official website of the United States government
