skip to main content


This content will become publicly available on June 24, 2024

Title: Lithium Tritelluride as an Electrolyte Additive for Stabilizing Lithium Deposition and Enhancing Sulfur Utilization in Anode‐Free Lithium–Sulfur Batteries
Abstract

Despite the potential to become the next‐generation energy storage technology, practical lithium–sulfur (Li–S) batteries are still plagued by the poor cyclability of the lithium‐metal anode and sluggish conversion kinetics of S species. In this study, lithium tritelluride (LiTe3), synthesized with a simple one‐step process, is introduced as a novel electrolyte additive for Li–S batteries. LiTe3quickly reacts with lithium polysulfides and functions as a redox mediator to greatly improve the cathode kinetics and the utilization of active materials in the cathode. Moreover, the formation of a Li2TeS3/Li2Te‐enriched interphase layer on the anode surface enhances ionic transport and stabilizes Li deposition. By regulating the chemistry on both the anode and cathode sides, this additive enables a stable operation of anode‐free Li–S batteries with only 0.1 mconcentration in conventional ether‐based electrolytes. The cell with the LiTe3additive retains 71% of the initial capacity after 100 cycles, while the control cell retains only 23%. More importantly, with high utilization of Te, the additive enables significantly better cyclability of anode‐free pouch full‐cells under lean electrolyte conditions.

 
more » « less
NSF-PAR ID:
10441337
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Functional Materials
Volume:
33
Issue:
43
ISSN:
1616-301X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Enhancing battery energy storage capability and reducing the cost per average energy capacity is urgent to satisfy the increasing energy demand in modern society. The lithium-sulfur (Li-S) battery is especially attractive because of its high theoretical specific energy (around 2600 W h kg-1), low cost, and low toxicity.1 Despite these advantages, the practical utilization of lithium-sulfur (Li-S) batteries to date has been hindered by a series of obstacles, including low active material loading, shuttle effects, and sluggish sulfur conversion kinetics.2 The traditional 2D planer thick electrode is considered as a general approach to enhance the mass loading of the Li-S battery.3 However, the longer diffusion length of lithium ions, which resulted in high tortuosity in the compact stacking thick electrode, decreases the penetration ability of the electrolyte into the entire cathode.4 Although an effort to induce catalysts in the cathode was made to promote sulfur conversion kinetic conditions, catalysts based on transition metals suffered from the low electronic conductivity, and some elements (i.e.: Co, Mn) may even absorb and restrict polysulfides for further reaction. 5 To mitigate the issues listed above, herein we propose a novel sulfur cathode design strategy enabled by additive manufacturing and oxidative chemical vapor deposition (oCVD). 6,7 Specifically, the cathode is designed to have a hierarchal hollow structure via a stereolithography technique to increase sulfur usage. Microchannels are constructed on the tailored sulfur cathode to further fortify the wettability of the electrolyte. The as-printed cathode is then sintered at 700 °C in an N2 atmosphere in order to generate a carbon skeleton (i.e.: carbonization of resin) with intrinsic carbon defects. The intrinsic carbon defects are expected to create favorable sulfur conversion conditions with sufficient electronic conductivity. In this study, the oCVD technique is leveraged to produce a conformal coating layer to eliminate shuttle effects. Identified by scanning electron microscopy and energy-dispersive X-ray spectroscopy mapping characterizations, the oCVD PEDOT is not only covered on the surface of the cathode but also on the inner surface of the microchannels. High-resolution x-ray photoelectron spectroscopy analyses (C 1s and S 2p orbitals) between pristine and modified samples demonstrate that a high concentration of the defects has been produced on the sulfur matrix after sintering and posttreatment. In-operando XRD diffractograms show that the Li2S is generated in the oCVD PEDOT-coated sample during the charge and discharge process even with a high current density, confirming an eminent sulfur conversion kinetic condition. In addition, ICP-OES results of lithium metal anode at different states of charge (SoC) verify that the shuttle effects are excellently restricted by oCVD PEDOT. Overall, the high mass loading (> 5 mg cm-2) with an elevated sulfur utilization ratio, accelerated reaction kinetics and stabilized electrochemical process have been achieved on the sulfur cathode by implementing this innovative cathode design strategy. The results of this study demonstrate significant promises of employing pure sulfur powder with high electrochemical performance and suggest a pathway to the higher energy and power density battery. References: 1 Chen, Y. Adv Mater 33, e2003666. 2 Bhargav, A. Joule 4, 285-291. 3 Liu, S. Nano Energy 63, 103894. 4 Chu, T. Carbon Energy 3. 5 Li, Y. Matter 4, 1142-1188. 6 John P. Lock. Macromolecules 39, 4 (2006). 7 Zekoll, S. Energy & Environmental Science 11, 185-201. 
    more » « less
  2. In Li–S batteries, the insulating nature of sulfur and Li 2 S causes enormous challenges, such as high polarization and low active material utilization. The nucleation of the solid discharge product, Li 2 S, during the discharge cycle, and the activation of Li 2 S in the subsequent charge cycle, cause a potential challenge that needs to be overcome. Moreover, the shuttling of soluble lithium polysulfide intermediate species results in active material loss and early capacity fade. In this study, we have used thiourea as an electrolyte additive and showed that it serves as both a redox mediator to overcome the Li 2 S activation energy barrier and a shuttle inhibitor to mitigate the notorious polysulfide shuttling via the investigation of thiourea redox activity, shuttle current measurements and study of Li 2 S activation. The steady-state shuttle current of the Li–S battery shows a 6-fold drop when 0.02 M thiourea is added to the standard electrolyte. Moreover, by adding thiourea, the charge plateau for the first cycle of the Li 2 S based cathodes shifts from 3.5 V (standard ether electrolyte) to 2.5 V (with 0.2 M thiourea). Using this additive, the capacity of the Li–S battery stabilizes at ∼839 mA h g −1 after 5 cycles and remains stable over 700 cycles with a low capacity decay rate of 0.025% per cycle, a tremendous improvement compared to the reference battery that retains only ∼350 mA h g −1 after 300 cycles. In the end, to demonstrate the practical and broad applicability of thiourea in overcoming sulfur-battery challenges and in eliminating the need for complex electrode design, we study two additional battery systems – lithium metal-free cells with a graphite anode and Li 2 S cathode, and Li–S cells with simple slurry-based cathodes fabricated via blending commercial carbon black/S and a binder. We believe that this study manifests the advantages of redox active electrolyte additives to overcome several bottlenecks in the Li–S battery field. 
    more » « less
  3. Abstract

    The development of practical lithium–sulfur (Li–S) batteries with prolonged cycle life and high Coulombic efficiency is limited by both parasitic reactions from dissolved polysulfides and mossy lithium deposition. To address these challenges, here lithium trithiocarbonate (Li2CS3)‐coated lithium sulfide (Li2S) is employed as a dual‐function cathode material to improve the cycling performance of Li–S batteries. Interestingly, at the cathode, Li2CS3forms an oligomer‐structured layer on the surface to suppress polysulfide shuttle. The presence of Li2CS3alters the conventional sulfur reaction pathway, which is supported by material characterization and density functional theory calculation. At the anode, a stable in situ solid electrolyte interphase layer with a lower Li‐ion diffusion barrier is formed on the Li‐metal surface to engender enhanced lithium plating/stripping performance upon cycling. Consequently, the obtained anode‐free full cells with Li2CS3exhibit a superior capacity retention of 51% over 125 cycles, whereas conventional Li2S cells retain only 26%. This study demonstrates that Li2CS3inclusion is an efficient strategy for designing high‐energy‐density Li–S batteries with extended cycle life.

     
    more » « less
  4. It is urgent to enhance battery energy storage capability to satisfy the increasing energy demand in modern society and reduce the average energy capacity cost. Among the candidates for next-generation high energy storage systems, the lithium-sulfur battery is especially attractive because of its high theoretical specific energy (around 2600 W h kg-1) and cost savings potential.1 In addition to the high theoretical capacity of sulfur cathode as high as 1,673 mA h g-1, sulfur is further appealing due to its abundance in nature, low cost, and low toxicity. Despite these advantages, the application of sulfur cathodes to date has been hindered by a number of obstacles, including low active material loading, low electronic conductivity, shuttle effects, and sluggish sulfur conversion kinetics.2 The traditional 2D planer thick electrode is considered as a general approach to enhance the mass loading of the lithium-sulfur (Li-S) battery.3 However, the longer diffusion length of lithium ions required in the thick electrode decrease the wettability of the electrolyte (into the entire cathode) and utilization ratio of active materials.4 Encapsulating active sulfur in carbon hosts is another common method to improve the performance of sulfur cathodes by enhancing the electronic conductivity and restricting shuttle effects. Nevertheless, it is also reported that the encapsulation approach causes unfavorable carbon agglomeration with low dimensional carbons and a low energy density of the battery with high dimensional carbons. Although an effort to induce defects in the cathode was made to promote sulfur conversion kinetic conditions, only one type of defect has demonstrated limited performance due to the strong adsorption of the uncatalyzed clusters to the defects (i.e.: catalyst poisoning). 5 To mitigate the issues listed above, herein we propose a novel sulfur electrode design strategy enabled by additive manufacturing and oxidative chemical vapor deposition (oCVD).6,7 Specifically, the electrode is designed to have a hierarchal hollow structure via a stereolithography technique to increase sulfur usage. Microchannels are constructed on the tailored sulfur cathode to further fortify the wettability of the electrolyte. The as-printed cathode is then sintered at 700 °C in a reducing atmosphere (e.g.: H2) in order to generate a carbon skeleton (i.e.: carbonization of resin) with intrinsic carbon defects. A cathode treatment with benzene sulfonic acid further induces additional defects (non-intrinsic) to enhance the sulfur conversion kinetic. Furthermore, intrinsic defects engineering is expected to synergistically create favorable sulfur conversion conditions and mitigate the catalyst poisoning issue. In this study, the oCVD technique is leveraged to produce a conformal coating layer to eliminate shuttle effects, unfavored in the Li-S battery performance. Identified by SEM and TEM characterizations, the oCVD PEDOT is not only covered on the surface of the cathode but also the inner surface of the microchannels. High resolution x-ray photoelectron spectroscopy analyses (C 1s and S 2p orbitals) between pristine and modified sample demonstrate that the high concentration of the defects have been produced on the sulfur matrix after sintering and posttreatment. In-operando XRD diffractograms show that the Li2S is generated in the oCVD PEDOT-coated sample during the charge and discharge process even with a high current density, confirming an eminent sulfur conversion kinetic condition. In addition, ICP-OES results of lithium metal anode at different states of charge (SoC) verify that the shuttle effects are excellently restricted by oCVD PEDOT. Overall, the high mass loading (> 5 mg cm-2) with elevated sulfur utilization ratio, accelerated reaction kinetics, and stabilized electrochemical process have been achieved on the sulfur cathode by implementing this innovative cathode design strategy. The results of this study demonstrate significant promises of employing pure sulfur powder with high electrochemical performance and suggest a pathway to the higher energy and power density battery. 
    more » « less
  5. Abstract

    Li‐S batteries can potentially deliver high energy density and power, but polysulfide shuttle and lithium dendrite formations on Li metal anode have been the major hurdle. The polysulfide shuttle becomes severe particularly when the areal loading of the active material (sulfur) is increased to deliver the high energy density and the charge/discharge current density is raised to deliver high power. This study reports a novel mechanochemical method to create trenches on the surface of carbon nanotubes (CNTs) in free‐standing 3D porous CNT sponges. Unique spiral trenches are created by pressures during the chemical treatment process, providing polysulfide‐philic surfaces for cathode and lithiophilic surfaces for anode. The Li‐S cells made from manufacturing‐friendly sulfur‐sandwiched cathodes and lithium‐infused anodes using the mechanochemically treated electrodes exhibit a strikingly high areal capacity as high as 13.3 mAh cm−2, which is only marginally reduced even with a tenfold increase in current density (16 mA cm−2), demonstrating both high “cell‐level” energy density and power. The outstanding performance can be attributed to the significantly improved reaction kinetics and lowered overpotentials coming from the reduced interfacial resistance and charge transfer resistance at both cathodes and anodes. The trench–wall CNT sponge simultaneously tackles the most critical problems on both the cathodes and anodes of Li‐S batteries, and this method can be utilized in designing new electrode materials for energy storage and beyond.

     
    more » « less