skip to main content


Title: Catalog of Integrated-light Star Cluster Light Curves in TESS
Abstract

We present the first integrated-light, TESS-based light curves for star clusters in the Milky Way, Small Magellanic Cloud, and Large Magellanic Cloud. We explore the information encoded in these light curves, with particular emphasis on variability. We describe our publicly available packageelk, which is designed to extract the light curves by applying principal component analysis to perform background light correction and incorporating corrections for TESS systematics, allowing us to detect variability on timescales shorter than ∼10 days. We perform a series of checks to ensure the quality of our light curves, removing observations where systematics are identified as dominant features, and deliver light curves for 348 previously cataloged open and globular clusters. Where TESS has observed a cluster in more than one observing sector, we provide separate light curves for each sector (for a total of 2204 light curves). We explore in detail the light curves of star clusters known to contain high-amplitude Cepheid and RR Lyrae variable stars, and we confirm that the variability of these known variables is still detectable when summed together with the light from thousands of other stars. We also demonstrate that even some low-amplitude stellar variability is preserved when integrating over a stellar population.

 
more » « less
NSF-PAR ID:
10441368
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astronomical Journal
Volume:
166
Issue:
3
ISSN:
0004-6256
Format(s):
Medium: X Size: Article No. 106
Size(s):
["Article No. 106"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Given its large plate scale of 21″ pixel−1, analyses of data from the Transiting Exoplanet Survey Satellite (TESS) space telescope must be wary of source confusion from blended light curves, which creates the potential to attribute observed photometric variability to the wrong astrophysical source. We explore the impact of light curve contamination on the detection of fast yellow pulsating supergiant (FYPS) stars as a case study to demonstrate the importance of confirming the source of detected signals in the TESS pixel data. While some of the FYPS signals have already been attributed to contamination from nearby eclipsing binaries, others are suggested to be intrinsic to the supergiant stars. In this work, we carry out a detailed analysis of the TESS pixel data to fit the source locations of the dominant signals reported for 17 FYPS stars with the Python packageTESS_localize. We are able to reproduce the detections of these signals for 14 of these sources, obtaining consistent source locations for four. Three of these originate from contaminants, while the signal reported for BZ Tuc is likely a spurious frequency introduced to the light curve of this 127 day Cepheid by the data processing pipeline. Other signals are not significant enough to be localized with our methods, or have long periods that are difficult to analyze given other TESS systematics. Since no localizable signals hold up as intrinsic pulsation frequencies of the supergiant targets, we argue that unambiguous detection of pulsational variability should be obtained before FYPS are considered a new class of pulsator.

     
    more » « less
  2. Abstract

    The Transiting Exoplanet Survey Satellite (TESS) has an exceptionally large plate scale of 21″ px−1, causing most TESS light curves to record the blended light of multiple stars. This creates a danger of misattributing variability observed by TESS to the wrong source, which would invalidate any analysis. We developed a method that can localize the origin of variability on the sky to better than one fifth of a pixel. Given measured frequencies of variability (e.g., from periodogram analysis), we show that the best-fit sinusoid amplitudes to raw light curves extracted from each pixel are distributed in the same way as light from the variable source. The primary assumption of this method is that other nearby stars are not variable at the same frequencies. Essentially, we are using the high frequency resolution of TESS to overcome limitations from its low spatial resolution. We have implemented our method in an open-source Python package,TESS_localize(github.com/Higgins00/TESS-Localize), that determines the location of a variable source on the sky and the most likely Gaia source given TESS pixel data and a set of observed frequencies of variability. Our method utilizes models of the TESS pixel response function, and we characterize systematics in the residuals of fitting these models to data. We find that even stars more than three pixels outside a photometric aperture can produce significant contaminant signals in the extracted light curves. Given the ubiquity of source blending in TESS light curves, verifying the source of observed variability should be a standard step in TESS analyses.

     
    more » « less
  3. Abstract

    We used a convolutional neural network to infer stellar rotation periods from a set of synthetic light curves simulated with realistic spot-evolution patterns. We convolved these simulated light curves with real TESS light curves containing minimal intrinsic astrophysical variability to allow the network to learn TESS systematics and estimate rotation periods despite them. In addition to periods, we predict uncertainties via heteroskedastic regression to estimate the credibility of the period predictions. In the most credible half of the test data, we recover 10% accurate periods for 46% of the targets, and 20% accurate periods for 69% of the targets. Using our trained network, we successfully recover periods of real stars with literature rotation measurements, even past the 13.7 day limit generally encountered by TESS rotation searches using conventional period-finding techniques. Our method also demonstrates resistance to half-period aliases. We present the neural network and simulated training data, and introduce the softwarebutterpyused to synthesize the light curves using realistic starspot evolution.

     
    more » « less
  4. Abstract

    Stellar variability is a limiting factor for planet detection and characterization, particularly around active M-type stars. Here we revisit one of the most active stars from the Kepler mission, the M4 star GJ 1243, and use a sample of 414 flare events from 11 months of 1-minute cadence light curves to study the empirical morphology of white-light stellar flares. We use a Gaussian process detrending technique to account for the underlying starspots. We present an improved analytic, continuous flare template that is generated by stacking the flares onto a scaled time and amplitude and uses a Markov Chain Monte Carlo analysis to fit the model. Our model is defined using classical flare events but can also be used to model complex, multipeaked flare events. We demonstrate the utility of our model using TESS data at the 10-minute, 2-minute, and 20 s cadence modes. Our new flare model code is made publicly available on GitHub.5

    https://github.com/lupitatovar/Llamaradas-Estelares

     
    more » « less
  5. ABSTRACT

    As an introduction of a kinematic survey of Magellanic Cloud (MC) star clusters, we report on the dynamical masses and mass-to-light ratios (M/L) of NGC 419 (Small Magellanic Cloud) and NGC 1846 (Large Magellanic Cloud). We have obtained more than one hundred high-resolution stellar spectra in and around each cluster using the multi-object spectrograph M2FS on the Magellan/Clay Telescope. Line-of-sight velocities and positions of the stars observed in each cluster were used as input to an expectation-maximization algorithm used to estimate cluster membership probabilities, resulting in samples of 46 and 52 likely members (PM ≥ 50 per cent) in NGC 419 and NGC 1846, respectively. This process employed single-mass King models constrained by the structural parameters of the clusters and provided self-consistent dynamical mass estimates for both clusters. Our best-fitting results show that NGC 419 has a projected central velocity dispersion of $2.44^{+0.37}_{-0.21}$ km s−1, corresponding to a total mass of $7.6^{+2.5}_{-1.3}\times 10^4\ {\rm M}_{\odot }$ and V-band M/L ratio of $0.22^{+0.08}_{-0.05}$ in solar units. For NGC 1846, the corresponding results are $2.04^{+0.28}_{-0.24}$ km s−1, $5.4^{+1.5}_{-1.4}\times 10^4\ {\rm M}_{\odot }$, and $0.32^{+0.11}_{-0.11}$. The mean metallicities of NGC 419 and NGC 1846 are found to be $\rm [Fe/H]=-0.84\pm 0.19$ and −0.70 ± 0.08, respectively, based on the spectra of likely cluster members. We find marginal statistical evidence of rotation in both clusters, though in neither cluster does rotation alter our mass estimates significantly. We critically compare our findings with those of previous kinematic studies of these two clusters in order to evaluate the consistency of our observational results and analytic tools.

     
    more » « less