skip to main content


This content will become publicly available on July 20, 2024

Title: Ablation‐Limited Erosion Rates of Permafrost Riverbanks
Abstract

Permafrost thaw is hypothesized to increase riverbank erosion rates, which threatens Arctic communities and infrastructure. However, existing erosion models have not been tested against controlled flume experiments with open‐channel flow past an erodible, hydraulically rough permafrost bank. We conducted temperature‐controlled flume experiments where turbulent water eroded laterally into riverbanks consisting of sand and pore ice. The experiments were designed to produce ablation‐limited erosion such that any thawed sediment was quickly transported away from the bank. Bank erosion rates increased linearly with water temperature, decreased with pore ice content, and were insensitive to changes in bank temperature, consistent with theory. However, erosion rates were approximately a factor of three greater than expected. The heightened erosion rates were due to a greater coefficient of heat transfer from the turbulent water to the permafrost bank caused by bank grain roughness. A revised ablation‐limited bank erosion model with a heat transfer coefficient that includes bank roughness matched our experimental results well. Results indicate that bank erosion along Arctic rivers can accelerate under scenarios of warming river water temperatures for cases where the cadence of bank erosion is set by pore‐ice melting rather than sediment entrainment.

 
more » « less
NSF-PAR ID:
10441493
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Earth Surface
Volume:
128
Issue:
8
ISSN:
2169-9003
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    How will bank erosion rates in Arctic rivers respond to a warming climate? Existing physical models predict that bank erosion rates should increase with water temperature as permafrost thaws more rapidly. However, the same theory predicts much faster erosion than is typically observed. We propose that these models are missing a key component: a layer of thawed sediment on the bank that buffers heat transfer and slows erosion. We developed a 1D model for this thawed layer, which reveals three regimes for permafrost riverbank erosion. Thaw‐limited erosion occurs in the absence of a thawed layer, such that rapid pore‐ice melting sets the pace of erosion, consistent with existing models. Entrainment‐limited erosion occurs when pore‐ice melting outpaces bank erosion, resulting in a thawed layer, and the relatively slow entrainment of sediment sets the pace of erosion similar to non‐permafrost rivers. Third, the intermediate regime occurs when the thawed layer goes through cycles of thickening and failure, leading to a transient thermal buffer that slows thaw rates. Distinguishing between these regimes is important because thaw‐limited erosion is highly sensitive to water temperature, whereas entrainment‐limited erosion is not. Interestingly, the buffered regime produces a thawed layer and relatively slow erosion rates like the entrainment‐limited regime, but erosion rates are temperature sensitive like the thaw‐limited regime. The results suggest the potential for accelerating erosion in a warming Arctic where bank erosion is presently thaw‐limited or buffered. Moreover, rivers can experience all regimes annually and transition between regimes with warming, altering their sensitivity to climate change.

     
    more » « less
  2. Abstract

    Climatic warming and permafrost thaw are predicted to increase Arctic riverbank erosion, threatening communities and accelerating sediment, carbon and nutrient cycling between rivers and floodplains. Existing theory assumes that pore‐ice thaw sets riverbank erosion rates, but overpredicts observed erosion rates by orders of magnitude. Here, we developed a simple model that predicts more modest rates due to a sediment‐entrainment limitation and riverbank armoring by slump blocks. Results show that during times of thaw‐limited erosion, the river rapidly erodes permafrost and undercuts its banks, consistent with previous work. However, overhanging banks generate slump blocks that must thaw and erode by sediment entrainment. Sediment entrainment can limit bank and slump block erosion rates, producing seasonally averaged rates more consistent with observations. Importantly, entrainment‐limited riverbank erosion does not depend on water temperature, indicating that decadal erosion rates may be less sensitive to warming than predicted previously.

     
    more » « less
  3. Abstract

    Whether permafrost systematically alters the rate of riverbank erosion is a fundamental geomorphic question with significant importance to infrastructure, water quality, and biogeochemistry of high‐latitude watersheds. For over four decades, this question has remained unanswered due to a lack of data. Using remotely sensed imagery, we addressed this knowledge gap by quantifying riverbank erosion rates across the Arctic and subarctic. To compare these rates to non‐permafrost rivers, we assembled a global data set of published riverbank erosion rates. We found that erosion rates in rivers influenced by permafrost are on average nine times lower than non‐permafrost systems; erosion rate differences increase up to 40 times for the largest rivers. To test alternative hypotheses for the observed erosion rate difference, we examined differences in total water yield and erosional efficiency between these rivers and non‐permafrost rivers. Neither of these factors nor differences in river sediment loads provided compelling alternative explanations, leading us to conclude that permafrost limits riverbank erosion rates. This conclusion was supported by field investigations of rates and patterns of erosion along three rivers flowing through discontinuous permafrost in Alaska. Our results show that permafrost limits maximum bank erosion rates on rivers with stream powers greater than 900 Wm−1. On smaller rivers, however, hydrology rather than thaw rate may be the dominant control on bank erosion. Our findings suggest that Arctic warming and hydrological changes should increase bank erosion rates on large rivers but may reduce rates on rivers with drainage areas less than a few thousand km2.

     
    more » « less
  4. null (Ed.)
    Observational data of coastal change over much of the Arctic are limited largely due to its immensity, remoteness, harsh environment, and restricted periods of sunlight and ice-free conditions. Barter Island, Alaska, is one of the few locations where an extensive, observational dataset exists, which enables a detailed assessment of the trends and patterns of coastal change over decadal to annual time scales. Coastal bluff and shoreline positions were delineated from maps, aerial photographs, and satellite imagery acquired between 1947 and 2020, and at a nearly annual rate since 2004. Rates and patterns of shoreline and bluff change varied widely over the observational period. Shorelines showed a consistent trend of southerly erosion and westerly extension of the western termini of Barter Island and Bernard Spit, which has accelerated since at least 2000. The 3.2 km long stretch of ocean-exposed coastal permafrost bluffs retreated on average 114 m and at a maximum of 163 m at an average long-term rate (70 year) of 1.6 ± 0.1 m/yr. The long-term retreat rate was punctuated by individual years with retreat rates up to four times higher (6.6 ± 1.9 m/yr; 2012–2013) and both long-term (multidecadal) and short-term (annual to semiannual) rates showed a steady increase in retreat rates through time, with consistently high rates since 2015. A best-fit polynomial trend indicated acceleration in retreat rates that was independent of the large spatial and temporal variations observed on an annual basis. Rates and patterns of bluff retreat were correlated to incident wave energy and air and water temperatures. Wave energy was found to be the dominant driver of bluff retreat, followed by sea surface temperatures and warming air temperatures that are considered proxies for evaluating thermo-erosion and denudation. Normalized anomalies of cumulative wave energy, duration of open water, and air and sea temperature showed at least three distinct phases since 1979: a negative phase prior to 1987, a mixed phase between 1987 and the early to late 2000s, followed by a positive phase extending to 2020. The duration of the open-water season has tripled since 1979, increasing from approximately 40 to 140 days. Acceleration in retreat rates at Barter Island may be related to increases in both thermodenudation, associated with increasing air temperature, and the number of niche-forming and block-collapsing episodes associated with higher air and water temperature, more frequent storms, and longer ice-free conditions in the Beaufort Sea. 
    more » « less
  5. Abstract

    Ongoing rapid arctic warming leads to extensive permafrost thaw, which in turn increases the hydrologic connectivity of the landscape by opening up subsurface flow paths. Suspended particulate organic matter (POM) has proven useful to trace permafrost thaw signals in arctic rivers, which may experience higher organic matter loads in the future due to expansion and increasing intensity of thaw processes such as thermokarst and river bank erosion. Here we focus on the Kolyma River watershed in Northeast Siberia, the world's largest watershed entirely underlain by continuous permafrost. To evaluate and characterize the present‐day fluvial release of POM from permafrost thaw, we collected water samples every 4–7 days during the 4‐month open water season in 2013 and 2015 from the lower Kolyma River mainstem and from a small nearby headwater stream (Y3) draining an area completely underlain by Yedoma permafrost (Pleistocene ice‐ and organic‐rich deposits). Concentrations of particulate organic carbon generally followed the hydrograph with the highest concentrations during the spring flood in late May/early June. For the Kolyma River, concentrations of dissolved organic carbon showed a similar behavior, in contrast to the headwater stream, where dissolved organic carbon values were generally higher and particulate organic carbon concentrations lower than for Kolyma. Carbon isotope analysis (δ13C, Δ14C) suggested Kolyma‐POM to stem from both contemporary and older permafrost sources, while Y3‐POM was more strongly influenced by in‐stream production and recent vegetation. Lipid biomarker concentrations (high‐molecular‐weightn‐alkanoic acids andn‐alkanes) did not display clear seasonal patterns, yet implied Y3‐POM to be more degraded than Kolyma‐POM.

     
    more » « less