skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Reversible intracellular acidification and depletion of NTPs provide a potential physiological origin for centuries of dormancy in an Antarctic freshwater copepod
Abstract A great diversity of crustacean zooplankton found in inland and coastal waters produce embryos that settle into bottom sediments to form an egg bank. Embryos from these banks can remain dormant for centuries, creating a reservoir of genetic diversity. A large body of literature describes the ecological and evolutionary importance of zooplankton egg banks. However, literature on the physiological traits behind dormancy in crustacean zooplankton are limited. Most data on the physiology of dormancy comes from research on one species of anostracan, the brine shrimp,Artemia franciscana. Anoxia-induced dormancy in this species is facilitated by a profound and reversible acidification of the intracellular space. This acidification is accompanied by a reversible depletion of adenosine triphosphate (ATP). The present study demonstrates that acidification of the intracellular space also occurs in concert with a depletion of nucleoside triphosphates (NTPs) in the Antarctic copepod,Boeckella poppei. LikeA. franciscana, the depletion of NTPs and acidification are rapidly reversed during aerobic recovery inB. poppei. These data provide the first comparative evidence that extreme dormancy under anoxia in crustacean zooplankton is associated with intracellular acidification and an ability to recover from the depletion of ATP.  more » « less
Award ID(s):
2116395
PAR ID:
10441597
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
13
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Dormancy is an adaptation to living in fluctuating environments. It allows individuals to enter a reversible state of reduced metabolic activity when challenged by unfavorable conditions. Dormancy can also influence species interactions by providing organisms with a refuge from predators and parasites. Here we test the hypothesis that, by generating a seed bank of protected individuals, dormancy can modify the patterns and processes of antagonistic coevolution. We conducted a factorially designed experiment where we passaged a bacterial host (Bacillus subtilis) and its phage (SPO1) in the presence versus absence of a seed bank consisting of dormant endospores. Owing in part to the inability of phages to attach to spores, seed banks stabilized population dynamics and resulted in minimum host densities that were 30-fold higher compared to bacteria that were unable to engage in dormancy. By supplying a refuge to phage-sensitive strains, we show that seed banks retained phenotypic diversity that was otherwise lost to selection. Dormancy also stored genetic diversity. After characterizing allelic variation with pooled population sequencing, we found that seed banks retained twice as many host genes with mutations, whether phages were present or not. Based on mutational trajectories over the course of the experiment, we demonstrate that seed banks can dampen bacteria-phage coevolution. Not only does dormancy create structure and memory that buffers populations against environmental fluctuations, it also modifies species interactions in ways that can feed back onto the eco-evolutionary dynamics of microbial communities. 
    more » « less
  2. Abstract Dispersal and dormancy are two common strategies allowing for species persistence and the maintenance of biodiversity in variable environments. However, theory and empirical tests of spatial diversity patterns tend to examine either mechanism in isolation. Here, we developed a stochastic, spatially explicit metacommunity model incorporating seed banks with varying germination and survival rates. We found that dormancy and dispersal had interactive, nonlinear effects on the maintenance and distribution of metacommunity diversity. Seed banks promoted local diversity when seed survival was high and maintained regional diversity through interactions with dispersal. The benefits of seed banks for regional diversity were largest when dispersal was high or intermediate, depending on whether local competition was equal or stabilising. Our study shows that classic predictions for how dispersal affects metacommunity diversity can be strongly influenced by dormancy. Together, these results emphasise the need to consider both temporal and spatial processes when predicting multi‐scale patterns of diversity. 
    more » « less
  3. Abstract A plant’s oxygen supply can vary from normal (normoxia) to total depletion (anoxia). Tolerance to anoxia is relevant to wetland species, rice (Oryza sativa) cultivation, and submergence tolerance of crops. Decoding and transmitting calcium (Ca) signals may be an important component to anoxia tolerance; however, the contribution of intracellular Ca transporters to this process is poorly understood. Four functional cation/proton exchangers (CAX1–4) in Arabidopsis (Arabidopsis thaliana) help regulate Ca homeostasis around the vacuole. Our results demonstrate that cax1 mutants are more tolerant to both anoxic conditions and submergence. Using phenotypic measurements, RNA-sequencing, and proteomic approaches, we identified cax1-mediated anoxia changes that phenocopy changes present in anoxia-tolerant crops: altered metabolic processes, diminished reactive oxygen species production post anoxia, and altered hormone signaling. Comparing wild-type and cax1 expressing genetically encoded Ca indicators demonstrated altered cytosolic Ca signals in cax1 during reoxygenation. Anoxia-induced Ca signals around the plant vacuole are involved in the control of numerous signaling events related to adaptation to low oxygen stress. This work suggests that cax1 anoxia response pathway could be engineered to circumvent the adverse effects of flooding that impair production agriculture. 
    more » « less
  4. Abstract While microorganisms are recognized for driving belowground processes that influence the productivity and fitness of plant populations, the vast majority of bacteria and fungi in soil belong to a seed bank consisting of dormant individuals. However, plant performance may be affected by microbial dormancy through its effects on the activity, abundance, and diversity of soil microorganisms. To test how microbial seed banks influence plant‐soil interactions, we purified recombinant resuscitation promoting factor (Rpf), a bacterial protein that terminates dormancy. In a factorially designed experiment, we then applied the Rpf to soil containing field mustard (Brassicarapa), an agronomically important plant species. Plant biomass was ~33% lower in the Rpf treatment compared to plants grown with an unmanipulated microbial seed bank. In addition, Rpf reduced soil respiration, decreased bacterial abundance, and increased fungal abundance. These effects of Rpf on plant performance were accompanied by shifts in bacterial community composition, which may have diluted mutualists or resuscitated pathogens. Our findings suggest that changes in microbial seed banks may influence the magnitude and direction of plant‐soil feedbacks in ways that affect above‐ and belowground biodiversity and function. 
    more » « less
  5. Abstract Seed dormancy in plants can have a significant impact on their ecology. Recent work by Rojas-Villa and Quijano-Abril (2023) classified the seed dormancy class in 14 plant species from the Andean forests of Colombia by using germination trials and several microscopy techniques to describe seed anatomy and morphology. The authors conclude thatCecropiaspecies have both physical and physiological dormancy (of which they call physiophysical dormancy) based on seed morphology and mean germination times of over 30 days. Here, we present seed permeability and germination data from neotropical pioneer tree species:Ochroma pyramidale,Cecropia longipes, andCecropia insignis, as well asCecropia peltata(present in Rojas-Villa and Quijano-Abril, 2023), to demonstrate thatCecropiaspecies do not exhibit dormancy and also have high levels of seed permeability. We find that the mean germination time for all threeCecropiaspecies in our study was less than 30 days. This suggests a need for reporting the conditions in which germination trials take place to allow for comparability among studies and using seed permeability tests to accurately identify the physical dormancy class of seeds. Further, we present data from the literature that suggests that dormancy is not a requirement for seed persistence in the seed bank. 
    more » « less