skip to main content


This content will become publicly available on July 1, 2024

Title: The Crystal-Wonder Cave System: A New Hotspot of Subterranean Biodiversity in the Southern Cumberland Plateau of South-Central Tennessee, USA
The Crystal-Wonder Cave System developed in the Western Escarpment of the southern Cumberland Plateau in the Interior Low Plateau karst region of south-central Tennessee, USA is a global hotspot of cave-limited biodiversity. We combined historical literature, museum accessions, and database occurrences with new observations from bio-inventory efforts conducted between 2005 and 2022 to compile an updated list of troglobiotic and stygobiotic biodiversity for the Crystal-Wonder Cave System. The list of cave-limited fauna includes 31 species (23 troglobionts and 8 stygobionts) with 28 and 18 species documented from the Crystal and Wonder caves, respectively, which represents five phyla, ten classes, nineteen orders, and twenty-six families (six arachnids, three springtails, two diplurans, three millipedes, six insects, three terrestrial snails, one flatworm, five crustaceans, and two vertebrates, respectively). The Crystal-Wonder Cave System is the type locality for six species—Anillinus longiceps, Pseudanophthalmus humeralis, P. intermedius, Ptomaphagus hatchi, Tolus appalachius, and Chitrella archeri. The carabid beetle Anillinus longiceps is endemic to the Crystal-Wonder Cave System. Sixteen species are of conservation concern, including twelve taxa with NatureServe conservation ranks of G1–G3. The exceptional diversity of the Crystal-Wonder Cave System has been associated with several factors, including a high dispersal potential of cave fauna associated with expansive karst exposures along the Western Escarpment of the southern Cumberland Plateau, a high surface productivity, and a favorable climate throughout the Pleistocene.  more » « less
Award ID(s):
2047939
NSF-PAR ID:
10441656
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Diversity
Volume:
15
Issue:
7
ISSN:
1424-2818
Page Range / eLocation ID:
801
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The Fern Cave System, developed in the western escarpment of the Southern Cumberland Plateau of the Interior Low Plateau karst region in Northeastern Alabama, USA, is a global hotspot of cave-limited biodiversity as well as home to the largest winter hibernaculum for the federally endangered Gray Bat (Myotis grisescens). We combined the existing literature, museum accessions, and database occurrences with new observations from bioinventory efforts conducted in 2018–2022 to generate an updated list of troglobiotic and stygobiotic species for the Fern Cave System. Our list of cave-limited fauna totals twenty-seven species, including nineteen troglobionts and eight stygobionts. Two pseudoscorpions are endemic to the Fern Cave System: Tyrannochthonius torodei and Alabamocreagris mortis. The exceptional diversity at Fern Cave is likely associated with several factors, such as the high dispersal potential of cave fauna associated with expansive karst exposures along the Southern Cumberland Plateau, high surface productivity, organic input from a large bat colony, favorable climate throughout the Pleistocene, and location within a larger regional hotspot of subterranean biodiversity. Nine species are of conservation concern, including the recently discovered Alabama cave shrimp Palaemonias alabamae, because of their small range sizes, few occurrences, and several potential threats. 
    more » « less
  2. The Western Ghats (WG) is an escarpment on the west coast of Peninsular India, housing one of the richest assemblages of frogs in the world, with three endemic families. Here, we report the discovery of a new ancient lineage from a high-elevation massif in the Wayanad Plateau of the southern WG. Phylogenetic analysis reveals that the lineage belongs to Natatanura and clusters with Nyctibatrachidae, a family endemic to the WG/Sri Lanka biodiversity hotspot. Based on geographic distribution, unique morphological traits, deep genetic divergence, and phylogenetic position that distinguishes the lineage from the two nyctibatrachid subfamilies Nyctibatrachinae Blommers-Schlösser, 1993 and Lankanectinae Dubois & Ohler, 2001, we erect a new subfamily Astrobatrachinae subfam. nov. (endemic to the WG, Peninsular India), and describe a new genus Astrobatrachus gen. nov. and species, Astrobatrachus kurichiyana sp. nov. The discovery of this species adds to the list of deeply divergent and monotypic or depauperate lineages with narrow geographic ranges in the southern massifs of the WG. The southern regions of the WG have long been considered geographic and climatic refugia, and this new relict lineage underscores their evolutionary significance. The small range of this species exclusively outside protected areas highlights the significance of reserve forest tracts in the WG in housing evolutionary novelty. This reinforces the need for intensive sampling to uncover new lineages and advance our understanding of the historical biogeography of this ancient landmass. 
    more » « less
  3. BACKGROUND Madagascar is one of the world’s foremost biodiversity hotspots. Its unique assemblage of plants, animals, and fungi—the majority of which evolved on the island and occur nowhere else—is both diverse and threatened. After human arrival, the island’s entire megafauna became extinct, and large portions of the current flora and fauna may be on track for a similar fate. Conditions for the long-term survival of many Malagasy species are not currently met because of multiple anthropogenic threats. ADVANCES We review the extinction risk and threats to biodiversity in Madagascar, using available international assessment data as well as a machine learning analysis to predict the extinction risks and threats to plant species lacking assessments. Our compilation of global International Union for Conservation of Nature (IUCN) Red List assessments shows that overexploitation alongside unsustainable agricultural practices affect 62.1 and 56.8% of vertebrate species, respectively, and each affects nearly 90% of all plant species. Other threats have a relatively minor effect today but are expected to increase in coming decades. Because only one-third (4652) of all Malagasy plant species have been formally assessed, we carried out a neural network analysis to predict the putative status and threats for 5887 unassessed species and to evaluate biases in current assessments. The percentage of plant species currently assessed as under threat is probably representative of actual numbers, except in the case of the ferns and lycophytes, where significantly more species are estimated to be threatened. We find that Madagascar is home to a disproportionately high number of Evolutionarily Distinct and Globally Endangered (EDGE) species. This further highlights the urgency for evidence-based and effective in situ and ex situ conservation. Despite these alarming statistics and trends, we find that 10.4% of Madagascar’s land area is protected and that the network of protected areas (PAs) covers at least part of the range of 97.1% of terrestrial and freshwater vertebrates with known distributions (amphibians, freshwater fishes, reptiles, birds, and mammal species combined) and 67.7% of plant species (for threatened species, the percentages are 97.7% for vertebrates and 79.6% for plants). Complementary to this, ex situ collections hold 18% of vertebrate species and 23% of plant species. Nonetheless, there are still many threatened species that do not occur within PAs and are absent from ex situ collections, including one amphibian, three mammals, and seven reptiles, as well as 559 plants and more yet to be assessed. Based on our updated vegetation map, we find that the current PA network provides good coverage of the major habitats, particularly mangroves, spiny forest, humid forest, and tapia, but subhumid forest and grassland-woodland mosaic have very low areas under protection (5.7 and 1.8% respectively). OUTLOOK Madagascar is among the world’s poorest countries, and its biodiversity is a key resource for the sustainable future and well-being of its citizens. Current threats to Madagascar’s biodiversity are deeply rooted in historical and present social contexts, including widespread inequalities. We therefore propose five opportunities for action to further conservation in a just and equitable way. First, investment in conservation and restoration must be based on evidence and effectiveness and be tailored to meet future challenges through inclusive solutions. Second, expanded biodiversity monitoring, including increased dataset production and availability, is key. Third, improving the effectiveness of existing PAs—for example through community engagement, training, and income opportunities—is more important than creating new ones. Fourth, conservation and restoration should not focus solely on the PA network but should also include the surrounding landscapes and communities. And finally, conservation actions must address the root causes of biodiversity loss, including poverty and food insecurity. In the eyes of much of the world, Madagascar’s biodiversity is a unique global asset that needs saving; in the daily lives of many of the Malagasy people, it is a rapidly diminishing source of the most basic needs for subsistence. Protecting Madagascar’s biodiversity while promoting social development for its people is a matter of the utmost urgency Visual representation of five key opportunities for conserving and restoring Madagascar’s rapidly declining biodiversity identified in this Review. The dashed lines point to representative vegetation types where these recommendations could have tangible effects, but the opportunities are applicable across Madagascar. ILLUSTRATION: INESSA VOET 
    more » « less
  4. Abstract

    Bats are important pollinators, but they are difficult to study since they are volant and nocturnal. Thus, long-term studies of nectarivorous bats are scarce, despite their potential to help assess trends in bat populations and their pollination services. We used capture rates of nectarivorous bats at chiropterophilous flowers in order to examine temporal trends in bat visitation in an area that is undergoing extensive land use change. We mist-netted at five bat-pollinated plant taxa (Durio zibethinus,Musa acuminata,Oroxylum indicum,Parkia speciosa, andSonneratiaspp.) in southern Thailand over six years between 2011 and 2021. We found that the most common bat species,Eonycteris spelaea, was the main visitor at all five plant taxa and had consistent visitation rates across all study years. In contrast, two other important pollinators,Macroglossus minimusandM. sobrinus, showed 80% declines in the number of individuals netted at mangrove apple (Sonneratiaspp.) and banana (Musa acuminata) flowers, respectively. These findings suggest thatE. spelaea(a large, cave-roosting species with a broad diet) is more tolerant of anthropogenic change than areMacroglossusbats (small, foliage-roosting species with specialized diets), which may in turn affect the reproductive success of plants pollinated by these species. Our study demonstrates how decade-long monitoring can reveal species-specific temporal patterns in pollinator visitation, emphasizing the need for tailored conservation plans. While the conservation status of most nectarivorous bats in the area is Least Concern, our results indicate that population studies in Southeast Asia are urgently needed for updated bat species conservation assessments.

     
    more » « less
  5. Abstract

    Developing systematic conservation plans depends on a wealth of information on a region's biodiversity. For ‘dark taxa' such as arthropods, such data are usually very incomplete and in most cases left out from assessments.

    Sky islands are important and often fragile biodiversity hotspots. Southern Appalachian high‐elevation spruce–fir forests represent a particularly threatened sky‐island ecosystem, hosting numerous endemic and threatened species, but their arthropods remain understudied.

    Here we use voucher‐based megabarcoding to explore genetic differentiation among leaf‐litter arthropod communities of these highlands, and to examine the extent to which they represent dispersed communities of more or less coherent species, manageable as a distributed unit. We assembled a dataset comprising more than 6000 COI sequences representing diverse arthropod groups to assess species richness and sharing across peaks and ranges. Comparisons were standardised across taxa using automated species delimitation, measuring endemism levels by putative species.

    Species richness was high, with sites hosting from 86 to 199 litter arthropod species (not including mites or myriapods). Community profiles suggest that around one fourth of these species are unique to single sky islands and more than one third of all species are limited to a particular range. Across major taxa, endemicity was lowest in Araneae, and highest in neglected groups like Isopoda, Pseudoscorpionida, Protura and Diplura.

    Southern Appalachian sky islands of spruce–fir habitat host significantly distinct leaf‐litter arthropod communities, with high levels of local endemicity. This is the first work to provide such a clear picture of peak and range uniqueness for a taxonomically broad sample. Ensuring the protection of a sizeable fraction of high‐elevation litter species richness will therefore require attention at a relatively fine spatial scale.

     
    more » « less