skip to main content


Title: A new ancient lineage of frog (Anura: Nyctibatrachidae: Astrobatrachinae subfam. nov.) endemic to the Western Ghats of Peninsular India
The Western Ghats (WG) is an escarpment on the west coast of Peninsular India, housing one of the richest assemblages of frogs in the world, with three endemic families. Here, we report the discovery of a new ancient lineage from a high-elevation massif in the Wayanad Plateau of the southern WG. Phylogenetic analysis reveals that the lineage belongs to Natatanura and clusters with Nyctibatrachidae, a family endemic to the WG/Sri Lanka biodiversity hotspot. Based on geographic distribution, unique morphological traits, deep genetic divergence, and phylogenetic position that distinguishes the lineage from the two nyctibatrachid subfamilies Nyctibatrachinae Blommers-Schlösser, 1993 and Lankanectinae Dubois & Ohler, 2001, we erect a new subfamily Astrobatrachinae subfam. nov. (endemic to the WG, Peninsular India), and describe a new genus Astrobatrachus gen. nov. and species, Astrobatrachus kurichiyana sp. nov. The discovery of this species adds to the list of deeply divergent and monotypic or depauperate lineages with narrow geographic ranges in the southern massifs of the WG. The southern regions of the WG have long been considered geographic and climatic refugia, and this new relict lineage underscores their evolutionary significance. The small range of this species exclusively outside protected areas highlights the significance of reserve forest tracts in the WG in housing evolutionary novelty. This reinforces the need for intensive sampling to uncover new lineages and advance our understanding of the historical biogeography of this ancient landmass.  more » « less
Award ID(s):
1701714
NSF-PAR ID:
10110614
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
PeerJ
Volume:
7
ISSN:
2167-8359
Page Range / eLocation ID:
e6457
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Sharpshooters (Cicadellinae), a large subfamily of the Cicadellidae, exhibit a global distribution and a broad array of ecological preferences. To explore the phylogenetic relationships and roles of global historical, biotic and biogeographic processes in the diversification of sharpshooters, we analysed DNA sequence data from three mitochondrial and two nuclear genes for 243 taxa representing all Cicadellinae tribes, generic groups, regional faunas and data of geographic distributions of sharpshooter species compiled from online databases and available literature. The maximum likelihood (ML) and Bayesian inference (BI) analyses strongly support the monophyletic clade including Cicadellinae and Phereurininae. Divergence time estimates and biogeographic analyses suggest that sharpshooters originated in the Neotropical region or were more widespread in Gondwana during the Early Cretaceous and diversified through a combination of ancient vicariance and dispersal following the evolution of angiosperm‐dominated habitats. The earliest divergence during the Cretaceous gave rise to Oriental and New World lineages, the latter of which subsequently dispersed into the Old World and gave rise to the diverse endemic fauna of Madagascar. The Oriental lineage shows high diversity and endemism in tropical Asia and the Pacific, with striking distributional discontinuities in Wallacea. These results suggest that a combination of environmental and evolutionary factors including continental‐scale vicariance, long‐distance dispersal and diversification of terrestrial microhabitats and host plants may explain the diversity of the modern sharpshooter fauna.

     
    more » « less
  2. Over the last 2 decades, routine collections in the Hawaiian Archipelago have expanded to mesophotic reefs, leading to the discovery of a new red algal genus and species, here described asAnunuuluaehu liulagen. et sp. nov. This study provides a detailed genus and species description and characterizes chloroplast and mitochondrial organellar genomes. The new genus,Anunuuluaehu, shares many characteristics with the family Phyllophoraceae and shows close similarities toArchestennogrammaandStenogramma, including habit morphology, nemathecia forming proliferations at the outer cortex with terminal chains of tetrasporangia, and carposporophytes with multi‐layered pericarps. The single species in this genus exhibits distinctive features within the Phyllophoraceae: the presence of single‐layer construction of large medullary cells and the development of long, tubular gonimoblastic filaments. Multi‐gene phylogenetic analyses confirmed it as a unique, monophyletic lineage within the family. Cis‐splicing genes, interrupted by intron‐encoded proteins within group II introns, are present in both the chloroplast and mitochondrial genomes ofA. liula. Notably, a specific region of thecoxI group II intron exhibits similarity to fungal introns.Anunuuluaehu liulais presumed to be endemic to the Hawaiian Archipelago and thus far is known to live solely at mesophotic depths from Hōlanikū to Kaho‘olawe ranging from 54 to 201 m, which is the deepest collection record of any representative in the family. Overall, this study enhances our understanding of the genomic and taxonomic complexities of red algae in mesophotic habitats, emphasizing the significance of continued research in this area to uncover further insights into evolutionary processes and biogeographic patterns.

     
    more » « less
  3. null (Ed.)
    Abstract Phylogenetic asymmetry is common throughout the tree of life and results from contrasting patterns of speciation and extinction in the paired descendant lineages of ancestral nodes. On the depauperate side of a node, we find extant ‘relict’ taxa that sit atop long, unbranched lineages. Here, we show that a tiny, pale green, inconspicuous and poorly known cicada in the genus Derotettix, endemic to degraded salt-plain habitats in arid regions of central Argentina, is a relict lineage that is sister to all other modern cicadas. Nuclear and mitochondrial phylogenies of cicadas inferred from probe-based genomic hybrid capture data of both target and non-target loci and a morphological cladogram support this hypothesis. We strengthen this conclusion with genomic data from one of the cicada nutritional bacterial endosymbionts, Sulcia, an ancient and obligate endosymbiont of the larger plant-sucking bugs (Auchenorrhyncha) and an important source of maternally inherited phylogenetic data. We establish Derotettiginae subfam. nov. as a new, monogeneric, fifth cicada subfamily, and compile existing and new data on the distribution, ecology and diet of Derotettix. Our consideration of the palaeoenvironmental literature and host-plant phylogenetics allows us to predict what might have led to the relict status of Derotettix over 100 Myr of habitat change in South America. 
    more » « less
  4. Giribet, Gonzalo (Ed.)
    New Zealand is home to 30 recognised endemic mite harvestman species and subspecies, 26 of which were described by Ray Forster in 1948 and 1952. These species comprise three genera: Rakaia Hirst, 1926, Neopurcellia Forster, 1948, and Aoraki Boyer & Giribet, 2007. Here, we focus on the diversity and distribution of Aoraki: we describe A. grandis Boyer, Tuffield & Dohr, sp. nov. and A. meridialis Boyer, Hahn & Ward, sp. nov. and we synonymise A. granulosa (Forster, 1952) with A. tumidata (Forster, 1948), bringing the total of named species and subspecies to twelve, and extending the southern range of the genus by over 100 km. Our phylogenetic analysis revealed three major lineages within the genus characterised by differing levels of granulation of the male fourth tarsus. We report striking variation in the range size and level of genetic structuring present within currently recognised species and subspecies of Aoraki, and propose future studies to address evolutionary, biogeographic and taxonomic questions in the group. urn:lsid:zoobank.org:pub:BDD4D61C-B099–44D5–949C-34AD217A016F. 
    more » « less
  5. null (Ed.)
    Hagfishes are an ancient group of benthic marine craniates that are found in deep or cold waters around the world. Among the 83 valid species, four are described from the Galapagos Islands: Eptatretus bobwisneri, E. grouseri, E. mccoskeri and Rubicundus lakeside. During a recent expedition to the archipelago, six species of hagfishes were collected, including four undescribed species of the genera Eptatretus (Eptatretus goslinei sp. nov.) and Myxine (Myxine greggi sp. nov., M. martinii sp. nov. and M. phantasma sp. nov.). In this paper, we provide a review of the eight species of hagfishes from the Galapagos Islands, including new diagnoses and an identification key for all species. Myxine phantasma is remarkable in that it is the only species of Myxine known to completely lack melanin-based pigments. Our species delineations were based on both morphological and molecular analyses. A phylogenetic hypothesis based on molecular data suggests that Galapagos hagfishes arose from multiple independent colonisations of the islands from as many as five different ancestral lineages. The large number of endemic hagfishes in the geologically young Galapagos Islands suggests that there is much global hagfish diversity yet to be discovered. 
    more » « less