skip to main content


Title: ArgU: A Controllable Factual Argument Generator
Effective argumentation is essential towards a purposeful conversation with a satisfactory outcome. For example, persuading someone to reconsider smoking might involve empathetic, well founded arguments based on facts and expert opinions about its ill-effects and the consequences on one’s family. However, the automatic generation of high-quality factual arguments can be challenging. Addressing existing controllability issues can make the recent advances in computational models for argument generation a potential solution. In this paper, we introduce ArgU: a neural argument generator capable of producing factual arguments from input facts and real-world concepts that can be explicitly controlled for stance and argument structure using Walton’s argument scheme-based control codes. Unfortunately, computational argument generation is a relatively new field and lacks datasets conducive to training. Hence, we have compiled and released an annotated corpora of 69,428 arguments spanning six topics and six argument schemes, making it the largest publicly available corpus for identifying argument schemes; the paper details our annotation and dataset creation framework. We further experiment with an argument generation strategy that establishes an inference strategy by generating an “argument template” before actual argument generation. Our results demonstrate that it is possible to automatically generate diverse arguments exhibiting different inference patterns for the same set of facts by using control codes based on argument schemes and stance.  more » « less
Award ID(s):
2214070
NSF-PAR ID:
10441736
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Proceedings of ACL 2023
Page Range / eLocation ID:
8373 to 8388
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. High quality arguments are essential elements for human reasoning and decision-making processes. However, effective argument construction is a challenging task for both human and machines. In this work, we study a novel task on automatically generating arguments of a different stance for a given statement. We propose an encoder-decoder style neural network-based argument generation model enriched with externally retrieved evidence from Wikipedia. Our model first generates a set of talking point phrases as intermediate representation, followed by a separate decoder producing the final argument based on both input and the keyphrases. Experiments on a large-scale dataset collected from Reddit show that our model constructs arguments with more topic-relevant content than popular sequence-to-sequence generation models according to automatic evaluation and human assessments. 
    more » « less
  2. Systems for automatic argument generation and debate require the ability to (1) determine the stance of any claims employed in the argument and (2) assess the specificity of each claim relative to the argument context. Existing work on understanding claim specificity and stance, however, has been limited to the study of argumentative structures that are relatively shallow, most often consisting of a single claim that directly supports or opposes the argument thesis. In this paper, we tackle these tasks in the context of complex arguments on a diverse set of topics. In particular, our dataset consists of manually curated argument trees for 741 controversial topics covering 95,312 unique claims; lines of argument are generally of depth 2 to 6. We find that as the distance between a pair of claims increases along the argument path, determining the relative specificity of a pair of claims becomes easier and determining their relative stance becomes harder. 
    more » « less
  3. Accurate information from both sides of the contemporary issues is known to be an `antidote in confirmation bias'. While these types of information help the educators to improve their vital skills including critical thinking and open-mindedness, they are relatively rare and hard to find online. With the well-researched argumentative opinions (arguments) on controversial issues shared by Procon.org in a nonpartisan format, detecting the stance of arguments is a crucial step to automate organizing such resources. We use a universal pretrained language model with weight-dropped LSTM neural network to leverage the context of an argument for stance detection on the proposed dataset. Experimental results show that the dataset is challenging, however, utilizing the pretrained language model fine-tuned on context information yields a general model that beats the competitive baselines. We also provide analysis to find the informative segments of an argument to our stance detection model and investigate the relationship between the sentiment of an argument with its stance. 
    more » « less
  4. Accurate information from both sides of the contemporary issues is known to be an `antidote in confirmation bias'. While these types of information help the educators to improve their vital skills including critical thinking and open-mindedness, they are relatively rare and hard to find online. With the well-researched argumentative opinions (arguments) on controversial issues shared by Procon.org in a nonpartisan format, detecting the stance of arguments is a crucial step to automate organizing such resources. We use a universal pretrained language model with weight-dropped LSTM neural network to leverage the context of an argument for stance detection on the proposed dataset. Experimental results show that the dataset is challenging, however, utilizing the pretrained language model fine-tuned on context information yields a general model that beats the competitive baselines. We also provide analysis to find the informative segments of an argument to our stance detection model and investigate the relationship between the sentiment of an argument with its stance. 
    more » « less
  5. Accurate information from both sides of the contemporary issues is known to be an ‘antidote in confirmation bias’. While these types of information help the educators to improve their vital skills including critical thinking and open-mindedness, they are relatively rare and hard to find online. With the well-researched argumentative opinions (arguments) on controversial issues shared by Procon.org in a non-partisan format, detecting the stance of arguments is a crucial step to automate organizing such resources. We use a universal pretrained language model with weight-dropped LSTM neural network to leverage the context of an argument for stance detection on the proposed dataset. Experimental results show that the dataset is challenging, however, utilizing the pretrained language model fine-tuned on context information yields a general model that beats the competitive baselines. We also provide analysis to find the informative segments of an argument to our stance detection model and investigate the relationship between the sentiment of an argument with its stance. 
    more » « less