Representing discourse as argument graphs facilitates robust analysis. Although computational frameworks for constructing graphs from monologues exist, there is a lack of frameworks for parsing dialogue. Inference Anchoring Theory (IAT) is a theoretical framework for extracting graphical argument structures and relationships from dialogues. Here, we introduce computational models for implementing the IAT framework for parsing dialogues. We experiment with a classification-based biaffine parser and Large Language Model (LLM)-based generative methods and compare them. Our results demonstrate the utility of finetuning LLMs for constructing IAT-based argument graphs from dialogues, which is a nuanced task.
more »
« less
Dialo-AP: A Dependency Parsing Based Argument Parser for Dialogues
While neural approaches to argument mining (AM) have advanced considerably, most of the recent work has been limited to parsing monologues. With an urgent interest in the use of conversational agents for broader societal applications, there is a need to advance the state-of-the-art in argument parsers for dialogues. This enables progress towards more purposeful conversations involving persuasion, debate and deliberation. This paper discusses Dialo-AP, an end-to-end argument parser that constructs argument graphs from dialogues. We formulate AM as dependency parsing of elementary and argumentative discourse units; the system is trained using extensive pre-training and curriculum learning comprising nine diverse corpora. Dialo-AP is capable of generating argument graphs from dialogues by performing all sub-tasks of AM. Compared to existing state-of-the-art baselines, Dialo-AP achieves significant improvements across all tasks, which is further validated through rigorous human evaluation.
more »
« less
- Award ID(s):
- 2214070
- PAR ID:
- 10441747
- Date Published:
- Journal Name:
- Proceedings of the 29th International Conference on Computational Linguistics (COLING)
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This tutorial will provide an overview of recent advances on neuro-symbolic approaches for information retrieval. A decade ago, knowledge graphs and semantic annotations technology led to active re- search on how to best leverage symbolic knowledge. At the same time, neural methods have demonstrated to be versatile and highly effective. From a neural network perspective, the same representation approach can service document ranking or knowledge graph reasoning. End-to-end training allows to optimize complex methods for downstream tasks. We are at the point where both the symbolic and the neural research advances are coalescing into neuro-symbolic approaches. The underlying research questions are how to best combine symbolic and neural ap- proaches, what kind of symbolic/neural approaches are most suitable for which use case, and how to best integrate both ideas to advance the state of the art in information retrieval.more » « less
-
This tutorial will provide an overview of recent advances on neuro- symbolic approaches for information retrieval. A decade ago, knowl- edge graphs and semantic annotations technology led to active research on how to best leverage symbolic knowledge. At the same time, neural methods have demonstrated to be versatile and highly effective. From a neural network perspective, the same representation approach can service document ranking or knowledge graph rea- soning. End-to-end training allows to optimize complex methods for downstream tasks. We are at the point where both the symbolic and the neural research advances are coalescing into neuro-symbolic approaches. The underlying research questions are how to best combine sym- bolic and neural approaches, what kind of symbolic/neural ap- proaches are most suitable for which use case, and how to best integrate both ideas to advance the state of the art in information retrieval. Materials are available online: https://github.com/laura-dietz/ neurosymbolic-representations-for-IRmore » « less
-
In this paper, we investigate whether symbolic semantic representations, extracted from deep semantic parsers, can help to reason over the states of involved entities in a procedural text. We consider a deep semantic parser (TRIPS) and semantic role labeling as two sources of semantic parsing knowledge. First, we propose PROPOLIS, a symbolic parsing-based procedural reasoning framework. Second, we integrate semantic parsing information into state-of-the-art neural models for procedural reasoning. Our experiments indicate that explicitly incorporating such semantic knowledge improves procedural understanding. This paper presents new metrics for evaluating procedural reasoning tasks that clarify the challenges and identify differences among neural, symbolic, and integrated models.more » « less
-
Video-language models (VLMs), large models pre-trained on numerous but noisy video-text pairs from the internet, have revolutionized activity recognition through their remarkable generalization and open-vocabulary capabilities. While complex human activities are often hierarchical and compositional, most existing tasks for evaluating VLMs focus only on high-level video understanding, making it difficult to accurately assess and interpret the ability of VLMs to understand complex and fine-grained human activities. Inspired by the recently proposed MOMA framework, we define activity graphs as a single universal representation of human activities that encompasses video understanding at the activity, sub10 activity, and atomic action level. We redefine activity parsing as the overarching task of activity graph generation, requiring understanding human activities across all three levels. To facilitate the evaluation of models on activity parsing, we introduce MOMA-LRG (Multi-Object Multi-Actor Language-Refined Graphs), a large dataset of complex human activities with activity graph annotations that can be readily transformed into natural language sentences. Lastly, we present a model-agnostic and lightweight approach to adapting and evaluating VLMs by incorporating structured knowledge from activity graphs into VLMs, addressing the individual limitations of language and graphical models. We demonstrate a strong performance on activity parsing and few-shot video classification, and our framework is intended to foster future research in the joint modeling of videos, graphs, and language.more » « less
An official website of the United States government

