skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Phototaxis in Cyanobacteria: From Mutants to Models of Collective Behavior
ABSTRACT Cyanobacteria rely on photosynthesis, and thus have evolved complex responses to light. These include phototaxis, the ability of cells to sense light direction and move towards or away from it. Analysis of mutants has demonstrated that phototaxis requires the coordination of multiple photoreceptors and signal transduction networks. The output of these networks is relayed to type IV pili (T4P) that attach to and exert forces on surfaces or other neighboring cells to drive “twitching” or “gliding” motility. This, along with the extrusion of polysaccharides or “slime” by cells, facilitates the emergence of group behavior. We evaluate recent models that describe the emergence of collective colony-scale behavior from the responses of individual, interacting cells. We highlight the advantages of “active matter” approaches in the study of bacterial communities, discussing key differences between emergent behavior in cyanobacterial phototaxis and similar behavior in chemotaxis or quorum sensing.  more » « less
Award ID(s):
1921429
PAR ID:
10441798
Author(s) / Creator(s):
; ; ; ;
Editor(s):
Harwood, Caroline S.
Date Published:
Journal Name:
mBio
Volume:
12
Issue:
6
ISSN:
2150-7511
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Alexandre, Gladys (Ed.)
    ABSTRACT Phototrophic biofilms in most environments experience major changes in light levels throughout a diel cycle. Phototaxis can be a useful strategy for optimizing light exposure under these conditions, but little is known about its role in cyanobacteria from thermal springs. We examined two closely related Synechococcus isolates ( Synechococcus OS-A dominates at 60 to 65°C and OS-B′ at 50 to 55°C) from outflows of Octopus Spring in Yellowstone National Park. Both isolates exhibited phototaxis and photokinesis in white light, but with differences in speed and motility bias. OS-B′ exhibited phototaxis toward UVA, blue, green, and red wavelengths, while OS-A primarily exhibited phototaxis toward red and green. OS-A also exhibited negative phototaxis under certain conditions. The repertoires of photoreceptors and signal transduction elements in both isolates were quite different from those characterized in other unicellular cyanobacteria. These differences in the photoresponses between OS-A and OS-B′ in conjunction with in situ observations indicate that phototactic strategies may be quite versatile and finely tuned to the light and local environment. IMPORTANCE Optimizing light absorption is of paramount importance to photosynthetic organisms. Some photosynthetic microbes have evolved a sophisticated process called phototaxis to move toward or away from a light source. In many hot springs in Yellowstone National Park, cyanobacteria thrive in thick, laminated biofilms or microbial mats, where small movements can result in large changes in light exposure. We quantified the light-dependent motility behaviors in isolates representing two of the most abundant and closely related cyanobacterial species from these springs. We found that they exhibited unexpected differences in their speed, directionality, and responses to different intensities or qualities of light. An examination of their genomes revealed several variations from well-studied phototaxis-related genes. Studying these recently isolated cyanobacteria reveals that diverse phototactic strategies can exist even among close relatives in the same environment. It also provides insights into the importance of phototaxis for growth and survival in microbial biofilm communities. 
    more » « less
  2. Abstract Artificial active colloids are an active area of research in the field of active matter and microrobotic systems. In particular, light‐driven semiconductor particles are shown to display interesting behaviors ranging from phototaxis (movement toward or away from a light source), rising from the substrate, interparticle attraction, attraction to the substrate, or other phenomena. However, these observations involve using multiple different designs of particles in varying conditions, making it unclear how the experimental parameters, such as pH, peroxide concentration, and light intensity, affect the outcomes. In this work, a peanut‐shaped hematite semiconductor particle is shown to exhibit a rich range of behavior as a function of the experimental conditions. The particles show rising, sticking, phototaxis, and in‐plane alignment of their long axes perpendicular to a magnetic field. A theoretical model accounting for gravity, van der Waals forces, electric double layer interactions with the glass surface, and self‐diffusiophoresis is formulated to describe the system. Using experimental data on the dependence of particle behavior on pH and ionic concentrations, the model captures the interplay of competing effects and explains many of the observed behaviors, providing insight into the relevant physical phenomena and how different environmental conditions can lead to such a rich diversity of behavior. 
    more » « less
  3. Many cyanobacteria, which use light as an energy source via photosynthesis, have evolved the ability to guide their movement toward or away from a light source. This process, termed “phototaxis,” enables organisms to localize in optimal light environments for improved growth and fitness. Mechanisms of phototaxis have been studied in the coccoid cyanobacteriumSynechocystissp. strain PCC 6803, but the rod-shapedSynechococcus elongatusPCC 7942, studied for circadian rhythms and metabolic engineering, has no phototactic motility. In this study we report a recent environmental isolate ofS. elongatus, the strain UTEX 3055, whose genome is 98.5% identical to that of PCC 7942 but which is motile and phototactic. A six-gene operon encoding chemotaxis-like proteins was confirmed to be involved in phototaxis. Environmental light signals are perceived by a cyanobacteriochrome, PixJSe(Synpcc7942_0858), which carries five GAF domains that are responsive to blue/green light and resemble those of PixJ fromSynechocystis. Plate-based phototaxis assays indicate that UTEX 3055 uses PixJSeto sense blue and green light. Mutation of conserved functional cysteine residues in different GAF domains indicates that PixJSecontrols both positive and negative phototaxis, in contrast to the multiple proteins that are employed for implementing bidirectional phototaxis inSynechocystis. 
    more » « less
  4. Research progress on the order Solifugae, commonly known as camel spiders, has been hindered by challenges inherent in collecting these fast-moving, nocturnal predators. Recently, pitfall trapping combined with artificial light lures showed promise for improving capture rates, but the hypothesis that camel spiders are attracted to light traps (positive phototaxis) has never been tested. We constructed short pitfall trap arrays with and without lights across the Mojave Desert to test the light attraction hypothesis. Nearly all camel spiders we collected were found in traps with suspended lights, lending strong support for positive phototaxis. Distance from the lights within trap arrays does not appear to be correlated with the success of individual pitfall traps. Excitingly, our short pitfall light arrays, or Caterpillar light traps, were relatively easy to install and yielded an order of magnitude more camel spiders per effort hour than previously reported techniques. 
    more » « less
  5. Tadpoles display preferences for different environments but the sensory modalities that govern these choices are not well understood. Here, we examined light preferences and associated sensory mechanisms of albino and wild-type Xenopus laevis tadpoles. We found that albino tadpoles spent more time in darker environments compared to the wild type, although they showed no differences in overall activity. This preference persisted when the tadpoles had their optic nerve severed or pineal glands removed, suggesting these sensory systems alone are not necessary for phototaxis. These experiments were conducted by an undergraduate laboratory course, highlighting how X. laevis tadpole behavior assays in a classroom setting can reveal new insights into animal behavior. 
    more » « less