- Award ID(s):
- 1828822
- PAR ID:
- 10441818
- Editor(s):
- Wilkening, Jennifer Lee
- Date Published:
- Journal Name:
- PLOS Climate
- Volume:
- 2
- Issue:
- 7
- ISSN:
- 2767-3200
- Page Range / eLocation ID:
- e0000225
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Climate change poses a growing threat to biodiversity, but the welfare consequences of these changes are not well understood. Here we analyze data on the US Endangered Species Act and project increases in species listing and spending due to climate change. We show that higher endangerment is strongly associated with the probability of listing but also find a large bias toward vertebrate species for both listing and spending. Unmitigated warming would cause the listing of an additional 690 species and committed spending of $21 billion by 2100. Several thousand more species would be critically imperiled by climate change but remain unlisted. Finally, we compare ESA spending with estimates of willingness to pay for conservation of 36 listed species. Aggregate WTP is larger than ESA spending for the vast majority of species even using conservative assumptions and typically one to two orders of magnitude larger than direct ESA spending using less restrictive assumptions.more » « less
-
Bacterial symbionts are essential components of healthy biological systems. They are increasingly recognized as important factors in the study and management of threatened species and ecosystems. Despite management shifts at the ecosystem level, microbial communities are often neglected in discussions of holobiont conservation in favor of the primary members of a symbiosis. In this study, we addressed the bacterial community knowledge gap for one of two federally endangered lichen species in the United States, Cetradonia linearis (Cladoniaceae). We collected 28 samples of the endangered rock gnome lichen (Cetradonia linearis) from 13 sites and characterized bacterial communities in thalli using 16S rRNA metabarcoding to investigate the factors influencing the microbiome composition and diversity within the thallus. We found that Proteobacteria (37.8% ± 10.3) and Acidobacteria (25.9% ± 6.0) were the most abundant phyla recovered. Cyanobacteria were a major component of the microbiome in some individuals, despite this species associating with a green algal symbiont. Habitat, climate, and geography were all found to have significant influences on bacterial community composition. An analysis of the core microbiome at a 90% threshold revealed shared amplicon sequence variants in the microbiomes of other lichens in the family Cladoniaceae. We concluded that the bacterial microbiome of Cetradonia linearis is influenced by environmental factors and that some bacterial taxa may be core to this group. Further exploration into the microbiomes of rare lichen species is needed to understand the importance of bacterial symbionts to lichen diversity and distributions.
-
Introduction Recent advances in genetic data collection utilizing next-generation DNA sequencing technologies have the potential to greatly aid the taxonomic assessment of species of conservation concern, particularly species that have been difficult to describe using morphology alone. Accurate taxonomic descriptions aided by genetic data are essential to directing limited conservation resources to species most in need.
Sclerocactus glaucus is a plant endemic to Western Colorado that is currently listed as Threatened under the Endangered Species Act (ESA). However, in 2023, the U. S. Fish and Wildlife Service proposed de-listingS. glaucus from the ESA due to recovery of the species. Previous research had found substantial genetic structure between populations in the northern part of theS. glaucus range relative to the majority of the species distribution.Methods In this study we utilized double-digest Restriction-site Associated DNA sequencing (RAD-seq) in order to better understand the genetic structure of
S. glaucus .Results Our results indicate that
S. glaucus contains two distinct evolutionary lineages that warrant recognition at the level of species, with what was previously described asS. glaucus North being recognized asSclerocactus dawsoniae .Discussion The newly described
S. dawsoniae has a limited estimated number of individuals, low levels of nucleotide diversity, a very narrow geographic range, and an uneven geographic distribution with most plants being found in a single management area, all of which supports continued direct conservation of this species. In contrast,S. glaucus has a large estimated minimum population size, a broad geographic range that includes numerous protected areas, and adequate levels of genetic diversity. Without further conservation action, a delisting decision forS. glaucus will simultaneously remove all Endangered Species Act protections forS. dawsoniae . The current work demonstrates the importance of having robust genetic datasets when planning conservation activities for species of concern. Moving forward, we recommend that government stakeholders prioritize supporting genetic studies of endangered species prior to making any changes to listing decisions. -
Abstract Climate change has the potential to reduce the abundance and distribution of species and threaten global biodiversity, but it is typically not listed as a threat in classifying species conservation status. This likely occurs because demonstrating climate change as a threat requires data‐intensive demographic information. Moreover, the threat from climate change is often studied in specific biomes, such as polar or arid ones. Other biomes, such as coastal ones, have received little attention, despite being currently exposed to substantial climate change effects. We forecast the effect of climate change on the demography and population size of a federally endangered coastal dune plant (
Lupinus tidestromii ). We use data from a 14‐yr demographic study across seven extant populations of this endangered plant. Using model selection, we found that survival and fertility measures responded negatively to temperature anomalies. We then produced forecasts based on stochastic individual‐based population models that account for uncertainty in demographic outcomes. Despite large uncertainties, we predict that all populations will decline if temperatures increase by 1°C. Considering the total number of individuals across all seven populations, the most likely outcome is a population decline of 90%. Moreover, we predict extinction is certain for one of our seven populations. These results demonstrate that climate change will profoundly decrease the current and future population growth rates of this plant, and its chance of persistence. Thus, our study provides the first evidence that climate change is an extinction threat for a plant species classified as endangered under the USA Endangered Species Act. -
Abstract In recent decades, there has been an increasing emphasis on proactive efforts to conserve species being considered for listing under the U.S. Endangered Species Act (ESA) before they are listed (i.e., preemptive conservation). These efforts, which depend on voluntary actions by public and private land managers across the species’ range, aim to conserve species while avoiding regulatory costs associated with ESA listing. We collected data for a set of social, economic, environmental, and institutional factors that we hypothesized would influence voluntary decisions to promote or inhibit preemptive conservation of species under consideration for ESA listing. We used logistic regression to estimate the association of these factors with preemptive conservation outcomes based on data for a set of species that entered the ESA listing process and were either officially listed (
n = 314) or preemptively conserved (n = 73) from 1996 to 2018. Factors significantly associated with precluded listing due to preemptive conservation included high baseline conservation status, low proportion of private land across the species’ range, small total range size, exposure to specific types of threats, and species’ range extending over several states. These results highlight strategies that can help improve conservation outcomes, such as allocating resources for imperiled species earlier in the listing process, addressing specific threats, and expanding incentives and coordination mechanisms for conservation on private lands.