skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Noah’s Ark in a Warming World: Climate Change, Biodiversity Loss, and Public Adaptation Costs in the United States
Climate change poses a growing threat to biodiversity, but the welfare consequences of these changes are not well understood. Here we analyze data on the US Endangered Species Act and project increases in species listing and spending due to climate change. We show that higher endangerment is strongly associated with the probability of listing but also find a large bias toward vertebrate species for both listing and spending. Unmitigated warming would cause the listing of an additional 690 species and committed spending of $21 billion by 2100. Several thousand more species would be critically imperiled by climate change but remain unlisted. Finally, we compare ESA spending with estimates of willingness to pay for conservation of 36 listed species. Aggregate WTP is larger than ESA spending for the vast majority of species even using conservative assumptions and typically one to two orders of magnitude larger than direct ESA spending using less restrictive assumptions.  more » « less
Award ID(s):
1924378
PAR ID:
10349606
Author(s) / Creator(s):
Date Published:
Journal Name:
Journal of the Association of Environmental and Resource Economists
Volume:
9
Issue:
5
ISSN:
2333-5955
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Wilkening, Jennifer Lee (Ed.)
    The Endangered Species Act (ESA) was a landmark protection for rare organisms in the United States. Although the ESA is known for its protection of wildlife, a majority of listed species are actually plants and lichen. Climate change will impact species populations globally. Already-rare species, like those listed in the ESA, are at an even higher risk due to climate change. Despite this, the risk climate change poses to endangered plants has not been systematically evaluated in over a decade. To address this gap, we modified previously existing qualitative assessment toolkits used to examine the threat of climate change in federal documentation on listed wildlife. These modified toolkits were then applied to the 771 ESA listed plants. First, we evaluated how sensitive ESA listed plants and lichens were to climate change based on nine quantitative sensitivity factors. Then, we evaluated if climate change was recognized as a threat for a species, and if actions were being taken to address the threats of climate change. We found that all ESA listed plant and lichen species are at least slightly (score of 1) sensitive to climate change, and therefore all listed plants and lichens are threatened by climate change. While a majority of ESA listing and recovery documents recognized climate change as a threat, very few had actions being taken in their recovery plans to address climate change directly. While acknowledging the threat that climate change poses to rare plants is an important first step, direct action will need to be taken to ensure the recovery of many of these species. 
    more » « less
  2. IntroductionRecent advances in genetic data collection utilizing next-generation DNA sequencing technologies have the potential to greatly aid the taxonomic assessment of species of conservation concern, particularly species that have been difficult to describe using morphology alone. Accurate taxonomic descriptions aided by genetic data are essential to directing limited conservation resources to species most in need.Sclerocactus glaucusis a plant endemic to Western Colorado that is currently listed as Threatened under the Endangered Species Act (ESA). However, in 2023, the U. S. Fish and Wildlife Service proposed de-listingS. glaucusfrom the ESA due to recovery of the species. Previous research had found substantial genetic structure between populations in the northern part of theS. glaucusrange relative to the majority of the species distribution. MethodsIn this study we utilized double-digest Restriction-site Associated DNA sequencing (RAD-seq) in order to better understand the genetic structure ofS. glaucus. ResultsOur results indicate thatS. glaucuscontains two distinct evolutionary lineages that warrant recognition at the level of species, with what was previously described asS. glaucusNorth being recognized asSclerocactus dawsoniae. DiscussionThe newly describedS. dawsoniaehas a limited estimated number of individuals, low levels of nucleotide diversity, a very narrow geographic range, and an uneven geographic distribution with most plants being found in a single management area, all of which supports continued direct conservation of this species. In contrast,S. glaucushas a large estimated minimum population size, a broad geographic range that includes numerous protected areas, and adequate levels of genetic diversity. Without further conservation action, a delisting decision forS. glaucuswill simultaneously remove all Endangered Species Act protections forS. dawsoniae. The current work demonstrates the importance of having robust genetic datasets when planning conservation activities for species of concern. Moving forward, we recommend that government stakeholders prioritize supporting genetic studies of endangered species prior to making any changes to listing decisions. 
    more » « less
  3. Species ranges are shifting in response to climate change, but most predictions disregard food–web interactions and, in particular, if and how such interactions change through time. Predator–prey interactions could speed up species range shifts through enemy release or create lags through biotic resistance. Here, we developed a spatially explicit model of interacting species, each with a thermal niche and embedded in a size-structured food–web across a temperature gradient that was then exposed to warming. We also created counterfactual single species models to contrast and highlight the effect of trophic interactions on range shifts. We found that dynamic trophic interactions hampered species range shifts across 450 simulated food–webs with up to 200 species each over 200 years of warming. All species experiencing dynamic trophic interactions shifted more slowly than single-species models would predict. In addition, the trailing edges of larger bodied species ranges shifted especially slowly because of ecological subsidies from small shifting prey. Trophic interactions also reduced the numbers of locally novel species, novel interactions and productive species, thus maintaining historical community compositions for longer. Current forecasts ignoring dynamic food–web interactions and allometry may overestimate species' tendency to track climate change. 
    more » « less
  4. Abstract Global invasive species introductions are rising, necessitating coordinated regulatory strategies within and across national borders. Although states and nations address their unique priorities using plant regulations, these regulations are most likely to reduce invasive plant introduction and spread if they are consistently enacted across political borders and proactively restrict spread early in the invasion process. Further, a unified regulatory landscape is particularly important given the imminent range infilling and large‐scale climate‐driven range shifts of invasive species.In the United States, federal and state regulations restrict the introduction and spread of several hundred invasive and noxious plant taxa in an effort to reduce their negative impacts. Using plant regulations for the lower 48 United States, we assessed consistency among regulated taxa based on similarities in adjacent states’ regulatory lists. We assessed proactivity by comparing regulatory lists to plants’ current and potential distributions given occurrence records and species distribution models under climate change.States regulate from 0 to 162 plant taxa, with an average of only 16.8% overlap of regulated taxa between adjacent states. Up to 137 plants may be present but unregulated in a state, and only 110 of 553 listed taxa were regulated in one or more states where they were not yet present. However, 36 states listed at least one taxon proactively (regulated but not present in the state). Of the 48 proactively listed taxa with species distribution models, we identified 41 cases (38 species in 21 states) where listing was ‘climate proactive’ (regulated, not present and where climate could be suitable for establishment by mid‐century).Policy implications. US plant regulatory lists were inconsistent across borders and reactive to climate change. However, most states regulate at least one plant taxa prior to its introduction, suggesting that a more proactive approach is possible under existing regulations. Coordination across borders is imperative given gaps in regional defences against invasion and projected invasive plant range shifts under climate change. We suggest that subnational, national and international governing bodies evaluate their plant regulatory lists for consistency and proactivity, as it is paramount for preventing the next wave of plant invasions. 
    more » « less
  5. ABSTRACT The fundamental trade‐off between current and future reproduction has long been considered to result in a tendency for species that can grow large to begin reproduction at a larger size. Due to the prolonged time required to reach maturity, estimates of tree maturation size remain very rare and we lack a global view on the generality and the shape of this trade‐off. Using seed production from five continents, we estimate tree maturation sizes for 486 tree species spanning tropical to boreal climates. Results show that a species' maturation size increases with maximum size, but in a non‐proportional way: the largest species begin reproduction at smaller sizes than would be expected if maturation were simply proportional to maximum size. Furthermore, the decrease in relative maturation size is steepest in cold climates. These findings on maturation size drivers are key to accurately represent forests' responses to disturbance and climate change. 
    more » « less