Vertically stacked van der Waals (vdW) heterostructures exhibit unique electronic, optical, and thermal properties that can be manipulated by twist-angle engineering. However, the weak phononic coupling at a bilayer interface imposes a fundamental thermal bottleneck for future two-dimensional devices. Using ultrafast electron diffraction, we directly investigated photoinduced nonequilibrium phonon dynamics in MoS2/WS2at 4° twist angle and WSe2/MoSe2heterobilayers with twist angles of 7°, 16°, and 25°. We identified an interlayer heat transfer channel with a characteristic timescale of ~20 picoseconds, about one order of magnitude faster than molecular dynamics simulations assuming initial intralayer thermalization. Atomistic calculations involving phonon-phonon scattering suggest that this process originates from the nonthermal phonon population following the initial interlayer charge transfer and scattering. Our findings present an avenue for thermal management in vdW heterostructures by tailoring nonequilibrium phonon populations.
more »
« less
Determining the twist angle of stacked MoS 2 layers using machine learning‐assisted low‐frequency interlayer Raman fingerprints
Abstract The investigation of twisted stacked few‐layer MoS2has revealed novel electronic, optical, and vibrational properties over an extended period. For the successful integration of twisted stacked few‐layer MoS2into a wide range of applications, it is crucial to employ a noninvasive, versatile technique for characterizing the layered architecture of these complex structures. In this work, we introduce a machine learning‐assisted low‐frequency Raman spectroscopy method to characterize the twist angle of few‐layer stacked MoS2samples. A feedforward neural network (FNN) is utilized to analyze the low‐frequency breathing mode as a function of the twist angle. Moreover, using finite difference method (FDM) and density functional theory (DFT) calculations, we show that the low‐frequency Raman spectra of MoS2are mainly influenced by the effect of the nearest and second nearest layers. A new improved linear chain model (TA‐LCM) with taking the twist angle into the consideration is developed to understand the interlayer breathing modes of stacked few‐layer MoS2. This approach can be extended to other 2D materials systems and provides an intelligent way to investigate naturally stacked and twisted interlayer interactions.
more »
« less
- Award ID(s):
- 1945364
- PAR ID:
- 10441883
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Journal of Raman Spectroscopy
- Volume:
- 54
- Issue:
- 9
- ISSN:
- 0377-0486
- Format(s):
- Medium: X Size: p. 1021-1029
- Size(s):
- p. 1021-1029
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Abstract The emerging field of twistronics, which harnesses the twist angle between two-dimensional materials, represents a promising route for the design of quantum materials, as the twist-angle-induced superlattices offer means to control topology and strong correlations. At the small twist limit, and particularly under strain, as atomic relaxation prevails, the emergent moiré superlattice encodes elusive insights into the local interlayer interaction. Here we introduce moiré metrology as a combined experiment-theory framework to probe the stacking energy landscape of bilayer structures at the 0.1 meV/atom scale, outperforming the gold-standard of quantum chemistry. Through studying the shapes of moiré domains with numerous nano-imaging techniques, and correlating with multi-scale modelling, we assess and refine first-principle models for the interlayer interaction. We document the prowess of moiré metrology for three representative twisted systems: bilayer graphene, double bilayer graphene and H-stacked MoSe 2 /WSe 2 . Moiré metrology establishes sought after experimental benchmarks for interlayer interaction, thus enabling accurate modelling of twisted multilayers.more » « less
-
Optical reflectance imaging is a popular technique for characterizing 2D materials, thanks to its simplicity and speed of data acquisition. The use of this method for studying interlayer phenomena in stacked 2D layers has, however, remained limited. Here we demonstrate that optical imaging can reveal the nature of interlayer coupling in stacked MoS2and WS2bilayers through their observed reflectance contrast versus the substrate. Successful determination of interlayer coupling requires co-optimization of the illumination wavelength and the thickness of an underlying SiO2film. Our observations are supported by multilayer optical calculations together with an analysis of the effect of any interlayer gap. This approach promises quick characterization of constructed 2D material systems.more » « less
-
Van der Waals heterojunctions of two-dimensional transition-metal dichalcogenides are intensely investigated for multiple optoelectronics applications. Strong and adjustable interactions between layers can influence the charge and energy flow that govern material performance. We report ab initio quantum molecular dynamics investigation of the influence of the bilayer twist angle on charge transfer and recombination in MoS 2 /WS 2 heterojunctions, including high-symmetry 0° and 60° configurations, and low symmetry 9.43° and 50.57° structures with Moiré patterns. The twist angle modulates interlayer coupling, as evidenced by changes in the interlayer distance, electron-vibrational interactions, and spectral shifts in the out-of-plane vibrational frequencies. Occurring on a femtosecond timescale, the hole transfer depends weakly on the twist angle and is ultrafast due to high density of acceptor states and large nonadiabatic coupling. In contrast, the electron–hole recombination takes nanoseconds and varies by an order of magnitude depending on the twist angle. The recombination is slow because it occurs across a large energy gap. It depends on the twist angle because the nonadiabatic coupling is sensitive to the interlayer distance and overlap of electron and hole wavefunctions. The Moiré pattern systems exhibit weaker interlayer interaction, generating longer-lived charges. Both charge separation and recombination are driven by out-of-plane vibrational motions. The simulations rationalize the experimental results on the influence of the bilayer twist angle on the charge separation and recombination. The atomistic insights provide theoretical guidance for design of high-performance optoelectronic devices based on 2D van der Waals heterostructures.more » « less
-
Abstract Two-dimensional membranes have gained enormous interest due to their potential to deliver precision filtration of species with performance that can challenge current desalination membrane platforms. Molybdenum disulfide (MoS2) laminar membranes have recently demonstrated superior stability in aqueous environment to their extensively-studied analogs graphene-based membranes; however, challenges such as low ion rejection for high salinity water, low water flux, and low stability over time delay their potential adoption as a viable technology. Here, we report composite laminate multilayer MoS2membranes with stacked heterodimensional one- to two-layer-thick porous nanosheets and nanodisks. These membranes have a multimodal porous network structure with tunable surface charge, pore size, and interlayer spacing. In forward osmosis, our membranes reject more than 99% of salts at high salinities and, in reverse osmosis, small-molecule organic dyes and salts are efficiently filtered. Finally, our membranes stably operate for over a month, implying their potential for use in commercial water purification applications.more » « less