skip to main content

Search for: All records

Award ID contains: 1945364

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    PdSe2, an emerging 2D material with a novel anisotropic puckered pentagonal structure, has attracted growing interest due to its layer‐dependent electronic bandgap, high carrier mobility, and good air stability. Herein, a detailed Raman spectroscopic study of few‐layer PdSe2(two to five layers) under the in‐plane uniaxial tensile strain up to 3.33% is performed. Two of the prominent PdSe2Raman peaks are influenced differently depending on the direction of strain application. The mode redshifts more than the mode when the strain is applied along thea‐axis of the crystal, while the mode redshifts more than the mode when the strain is applied along theb‐axis. Such an anisotropic phonon response to strain indicates directionally dependent mechanical and thermal properties of PdSe2and also allows the identification of the crystal axes. The results are further supported using first‐principles density‐functional theory. Interestingly, the near‐zero Poisson’s ratios for few‐layer PdSe2are found, suggesting that the uniaxial tensile strain can easily be applied to few‐layer PdSe2without significantly altering their dimensions at the perpendicular directions, which is a major contributing factor to the observed distinct phonon behavior. The findings pave the way for further development of 2D PdSe2‐based flexible electronics.

  2. The d electron plays a significant role in determining and controlling the properties of magnetic materials. However, the d electron transitions, especially d–d emission, have rarely been observed in magnetic materials due to the forbidden selection rules. Here, we report an observation of d–d emission in antiferromagnetic nickel phosphorus trisulfides (NiPS3) and its strong enhancement by stacking it with monolayer tungsten disulfide (WS2). We attribute the observation of the strong d–d emission enhancement to the charge transfer between NiPS3 and WS2 in the type-I heterostructure. The d–d emission peak splits into two peaks, D1 and D2, at low temperature below 150 K, from where an energy splitting due to the trigonal crystal field is measured as 105 meV. Moreover, we find that the d–d emissions in NiPS3 are nonpolarized lights, showing no dependence on the zigzag antiferromagnetic configuration. These results reveal rich fundamental information on the electronic and optical properties of emerging van der Waals antiferromagnetic NiPS3.

    Free, publicly-accessible full text available November 15, 2023
  3. Free, publicly-accessible full text available October 28, 2023
  4. Correlated-electron systems have long been an important platform for various interesting phenomena and fundamental questions in condensed matter physics. As a pivotal process in these systems, d-d transitions have been suggested as a key factor toward realizing optical spin control in two-dimensional (2D) magnets. However, it remains unclear how d-d excitations behave in quasi-2D systems with strong electronic correlation and spin-charge coupling. Here, we present a systematic electronic Raman spectroscopy investigation on d-d transitions in a 2D antiferromagnet—NiPS 3 , from bulk to atomically thin samples. Two electronic Raman modes originating from the scattering of incident photons with d electrons in Ni 2+ ions are observed at ~1.0 eV. This electronic process persists down to trilayer flakes and exhibits insensitivity to the spin ordering of NiPS 3 . Our study demonstrates the utility of electronic Raman scattering in investigating the unique electronic structure and its coupling to magnetism in correlated 2D magnets.
  5. In this review paper, we summarized the recent progress of using graphene as a sensing platform for environmental applications. Especially, we highlight the electrical and optical sensing devices developed based on graphene and its derivatives. We discussed the role of graphene in these devices, the sensing mechanisms, and the advantages and disadvantages of specific devices. The approaches to improve the sensitivity and selectivity are also discussed.