skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Whitewater Sound Dependence on Discharge and Wave Configuration at an Adjustable Wave Feature
Abstract Stream acoustics has been proposed as a means of monitoring discharge and wave hazards from outside the stream channel. To better understand the dependence of sound on discharge and wave characteristics, this study analyzes discharge and infrasound data from an artificial wave feature which is adjusted to accommodate daily changes in recreational use and seasonal changes in irrigation demand. Monitorable sound is only observed when discharge exceeds ∼35 m3/s, and even above that threshold the sound‐discharge relationship is non‐linear and inconsistent. When sound is observed, it shows consistent dependence on wave type within a given year, but the direction of this dependence varies among the 3 years studied (2016, 2021, and 2022). These findings support previous research that establishes discharge and stream morphology as relevant controls on stream acoustics and highlights the complex, combined effects of these variables.  more » « less
Award ID(s):
2051670
PAR ID:
10441890
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Water Resources Research
Volume:
59
Issue:
8
ISSN:
0043-1397
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Wind, wave, and acoustic observations are used to test a scaling for ambient sound levels in the ocean that is based on wind speed and the degree of surface wave development (at a given wind speed). The focus of this study is acoustic frequencies in the range 1-20 kHz, for which sound is generated by the bubbles injected during surface wave breaking. Traditionally, ambient sound spectra in this frequency range are scaled by wind speed alone. In this study, we investigate a secondary dependence on surface wave development. For any given wind-speed, ambient sound levels are separated into conditions in which waves are 1) actively developing or 2) fully developed. Wave development is quantified using the non-dimensional wave height, a metric commonly used to analyze fetch or duration limitations in wave growth. This simple metric is applicable in both coastal and open ocean environments. Use of the wave development metric to scale sound spectra is first motivated with observations from a brief case study near the island of Jan Mayen (Norwegian Sea), then robustly tested with long time-series observations of winds and waves at Ocean Station Papa (North Pacific Ocean). When waves are actively developing, ambient sound levels are elevated 2-3 dB across the 1-20 kHz frequency range. This result is discussed in the context of sound generation during wave breaking and sound attenuation by persistent bubble layers. 
    more » « less
  2. Wildfires are a worldwide disturbance with unclear implications for stream water quality. We examined stream water chemistry responses immediately (<1 month) following a wildfire by measuring over 40 constituents in four gauged coastal watersheds that burned at low to moderate severity. Three of the four watersheds also had pre‐fire concentration‐discharge data for 14 constituents: suspended sediment (SSfine), dissolved organic and inorganic carbon (DOC, DIC), specific UV absorbance (SUVA), major ions (Ca2+, K+, Mg2+, Na+, Cl, SO42−, NO3, F), and select trace elements (total dissolved Mn, Fe). In all watersheds, post‐fire stream water concentrations of SSfine, DOC, Ca2+, Cl, and changed when compared to pre‐fire data. Post‐fire changes in , K+, Na+, Mg2+, DIC, SUVA, and total dissolved Fe were also found for at least two of the three streams. For constituents with detectable responses to wildfire, post‐fire changes in the slopes of concentration‐discharge relationships commonly resulted in stronger enrichment trends or weaker dilution trends, suggesting that new contributing sources were surficial or near the surface. However, a few geogenic solutes, Ca2+, Mg2+, and DIC, displayed stronger dilution trends at nearly all sites post‐fire. Moreover, fire‐induced constituent concentration changes were highly discharge and site‐dependent. These similarities and differences in across‐site stream water chemistry responses to wildfire emphasize the need for a deeper understanding of landscape‐scale changes to solute sources and pathways. Our findings also highlight the importance of being explicit about reference points for both stream discharge and pre‐fire stream water chemistry in post‐fire assessment of concentration changes. 
    more » « less
  3. Abstract Dissolved organic matter (DOM) is a large and complex mixture of compounds with source inputs that differ with location, season, and environmental conditions. Here, we investigated drivers of DOM composition changes in a marsh‐dominated estuary off the southeastern United States. Monthly water samples were collected at a riverine and estuarine site from September 2015 to September 2016, and bulk, optical, and molecular analyses were conducted on samples before and after dark incubations. Results showed that river discharge was the primary driver changing the DOM composition at the mouth of the Altamaha River. For discharge higher than ~150 m3/s, dissolved organic carbon (DOC) concentrations and the terrigenous character of the DOM increased approximately linearly with river flow. For low discharge conditions, a clear signature of salt marsh‐derived compounds was observed in the river. At the head of Sapelo Sound, changes in DOM composition were primarily driven by river discharge and possibly by summer algae blooms. Microbial consumption of DOC was larger during periods of high discharge at both sites, potentially due to the higher mobilization and influx of fresh material to the system. The Georgia coast was hit by Hurricane Matthew in October 2016, which resulted in a large input of carbon to the estuary. The DOC concentration was ~2 times higher and DOM composition was more aromatic with a stronger terrigenous signature compared to the seasonal maximum observed earlier in the year during peak river discharge conditions. This suggests that extreme events notably impact DOM quantity and quality in estuarine regions. 
    more » « less
  4. Abstract Recent studies have shown that reconfigurable acoustic arrays inspired from rigid origami structures can be used to radiate and focus acoustic waves. Yet, there is a need for exploration of single-degree-of-freedom deployment to be integrated with such arrays for sake of tailoring wave focusing. This research explores a reconfigurable acoustic array inspired from a regular Miura-ori unit cell and threefold-symmetric Bricard linkage. The system focuses on acoustic waves and has single-degree-of-freedom motion when incorporated with a modified threefold-symmetric Bricard linkage. Three configurations of the array are analyzed where array facets that converge towards the center axis are considered to vibrate like baffled pistons and generate acoustic waves into the surrounding fluid. An analytical model is constructed to explore the near-field acoustic focusing behavior of the proposed acoustic array. The wave focusing capabilities of the array are verified through proof-of-principle experiments. The results show that the wave focusing of the array is influenced by the geometric parameters of the facets and the relative distance of facets to the center axis, in agreement with simplified ray acoustics estimates. These findings underscore the fundamental relationship between focusing sound radiators and geometric acoustics principles. The results encourage broader exploration of acoustic array designs inspired from integrated single-degree-of-freedom linkages and origami structures for sake of straightforward array deployment and reconfiguration. 
    more » « less
  5. Nonlinear lattices and the nonlinear acoustics they support have a broad impact on shock and vibration mitigation, sound isolation, and acoustic logic devices. In this work, we experimentally study wave redirection, localization, and non-reciprocity in an asymmetric network of two nonlinear lattices with weak linear inter-lattice coupling. We report on the design, fabrication, and system identification of coupled lattices with essentially nonlinear next-neighbor intra-lattice coupling and on their unusual nonlinear acoustics. By weakly coupling the lattices and introducing structural disorder in one of them, we experimentally prove the realization of irreversible breather redirection between lattices governed by a macroscopic analog of the quantum Landau–Zener tunneling effect. In the experiments performed, the input energy is applied by impulse (broadband) excitation, and the resulting acoustical mechanism for wave redirection is in the form of propagating breathers, that is, localized oscillating wave packets formed by the synergy of nonlinearity and dispersion. Moreover, we study the non-reciprocal acoustics of the experimental lattice system by applying separate impulses at each of its four terminals and investigate the tunability with the energy of the resulting acoustic non-reciprocity by systematically varying the impulse intensity. The reported experimental results show that the weakly coupled, disordered, and nonlinear lattice system has wave tailoring properties that are tunable with energy. Altogether, the experimental results agree well with theoretical predictions reported in a companion work based on reduced-order numerical models and prove the efficacy of the system for applications, providing a path for applying these advanced concepts in future structures and devices. 
    more » « less