skip to main content


Title: MgSiP 2 : An Infrared Nonlinear Optical Crystal with a Large Non‐Resonant Phase‐Matchable Second Harmonic Coefficient and High Laser Damage Threshold
Abstract

Superior infrared nonlinear optical (NLO) crystals are in urgent demand in the development of lasers and optical technologies for communications and computing. The critical challenge is to find a crystal with large non‐resonant phase‐matchable NLO coefficients and high laser damage threshold (LDTs) simultaneously, which however scale inversely. This work reports such a material, MgSiP2,that exhibits a large second harmonic generation (SHG) coefficient ofd14d36= 89 ± 5 pm V−1at 1550 nm fundamental wavelength, surpassing the commercial NLO crystals AgGaS2, AgGaSe2, and ZnGeP2. First principles theory reveals the polarizability and geometric arrangement of the [SiP4] tetrahedral units as the origin of this large nonlinear response. Remarkably, it also exhibits a high LDT value of 684 GW cm−2, which is six times larger than ZnGeP2and three times larger than CdSiP2. It has a wide transparency window of 0.53–10.35 µm, allowing broadband tunability. Further, it is Type I and Type II phase‐matchable with large effective SHG coefficients ofdeff,I≈80.2 pm V−1anddeff,II≈73.4 pm V−1. The outstanding properties of MgSiP2make it a highly attractive candidate for optical frequency conversion in the infrared.

 
more » « less
Award ID(s):
2210933
NSF-PAR ID:
10441908
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Optical Materials
Volume:
11
Issue:
24
ISSN:
2195-1071
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The dearth of suitable materials significantly restricts the practical development of infrared (IR) laser systems with highly efficient and broadband tuning. Recently, γ‐NaAsSe2is reported, and it exhibits a large nonlinear second‐harmonic generation (SHG) coefficient of 590 pm V−1at 2 µm. However, the crystal growth of γ‐NaAsSe2is challenging because it undergoes a phase transition to centrosymmetric δ‐NaAsSe2. Herein, the stabilization of non‐centrosymmetric γ‐NaAsSe2by doping the As site with Sb, which results in γ‐NaAs0.95Sb0.05Se2is reported. The congruent melting behavior is confirmed by differential thermal analysis with a melting temperature of 450 °C and crystallization temperature of 415 °C. Single crystals with dimensions of 3 mm × 2 mm are successfully obtained via zone refining and the Bridgman method. The purification of the material plays a significant role in crystal growth and results in a bandgap of 1.78 eV and thermal conductivity of 0.79 Wm−1K−1. The single‐crystal SHG coefficient of γ‐NaAs0.95Sb0.05Se2exhibits an enormous value of |d11| = 648 ± 74 pm V−1, which is comparable to that of γ‐NaAsSe2and ≈20× larger than that of AgGaSe2. The bandgap of γ‐NaAs0.95Sb0.05Se2(1.78 eV) is similar to that of AgGaSe2, thus rendering it highly attractive as a high‐performing nonlinear optical material.

     
    more » « less
  2. Nonlinear optical (NLO) crystals with superior properties are significant for advancing laser technologies and applications. Introducing rare earth metals to borates is a promising and effective way to modify the electronic structure of a crystal to improve its optical properties in the visible and ultraviolet range. In this work, we computationally discover inversion symmetry breaking in EuBa3(B3O6)3, which was previously identified as centric, and demonstrate noncentrosymmetry via synthesizing single crystals for the first time by the floating zone method. We determine the correct space group to beP6¯. The material has a large direct bandgap of 5.56 eV and is transparent down to 250 nm. The complete anisotropic linear and nonlinear optical properties were also investigated with ad11of ∼0.52 pm/V for optical second harmonic generation. Further, it is Type I and Type II phase matchable. This work suggests that rare earth metal borates are an excellent crystal family for exploring future deep ultraviolet (DUV) NLO crystals. It also highlights how first principles computations combined with experiments can be used to identify noncentrosymmetric materials that have been wrongly assigned to be centrosymmetric.

     
    more » « less
  3. The new, quaternary diamond-like semiconductor (DLS) Cu 4 MnGe 2 S 7 was prepared at high-temperature from a stoichiometric reaction of the elements under vacuum. Single crystal X-ray diffraction data were used to solve and refine the structure in the polar space group Cc. Cu 4 MnGe 2 S 7 features [Ge 2 S 7 ] 6− units and adopts the Cu 5 Si 2 S 7 structure type that can be considered a derivative of the hexagonal diamond structure. The DLS Cu 2 MnGeS 4 with the wurtz-stannite structure was similarly prepared at a lower temperature. The achievement of relatively phase-pure samples, confirmed by X-ray powder diffraction data, was nontrival as differential thermal analysis shows an incongruent melting behaviour for both compounds at relatively high temperature. The dark red Cu 2 MnGeS 4 and Cu 4 MnGe 2 S 7 compounds exhibit direct optical bandgaps of 2.21 and 1.98 eV, respectively. The infrared (IR) spectra indicate potentially wide windows of optical transparency up to 25 μm for both materials. Using the Kurtz–Perry powder method, the second-order nonlinear optical susceptibility, χ (2) , values for Cu 2 MnGeS 4 and Cu 4 MnGe 2 S 7 were estimated to be 16.9 ± 2.0 pm V −1 and 2.33 ± 0.86 pm V −1 , respectively, by comparing with an optical-quality standard reference material, AgGaSe 2 (AGSe). Cu 2 MnGeS 4 was found to be phase matchable at λ = 3100 nm, whereas Cu 4 MnGe 2 S 7 was determined to be non-phase matchable at λ = 1600 nm. The weak SHG response of Cu 4 MnGe 2 S 7 precluded phase-matching studies at longer wavelengths. The laser-induced damage threshold (LIDT) for Cu 2 MnGeS 4 was estimated to be ∼0.1 GW cm −2 at λ = 1064 nm (pulse width: τ = 30 ps), while the LIDT for Cu 4 MnGe 2 S 7 could not be ascertained due to its weak response. The significant variance in NLO properties can be reasoned using the results from electronic structure calculations. 
    more » « less
  4. Abstract

    Nonlinear optical (NLO) materials are of intense academic and technological interest attributable to their ability to generate coherent radiation over a range of different wavelengths. The requirements for a viable NLO material are rather strict, and their discovery has mainly been serendipitous. This study reports synthesis, characterization, and, most importantly, growth of large single crystals of a technologically viable NLO material—Rb3Ba3Li2Al4B6O20F. Through the judicious selection of cations, Rb3Ba3Li2Al4B6O20F exhibits a 3D structure that facilitates the growth of large single crystals along the optical axis direction. Measurements on these crystals indicate that Rb3Ba3Li2Al4B6O20F exhibits a moderate birefringence of 0.057 at 1064 nm enabling Type I phase‐matching down to 243 nm. Theoretical calculations indicate the symmetry adapted mode displacement (SAMD) parameter scales with the second‐harmonic generation intensity.

     
    more » « less
  5. Abstract

    Borate halides are an ideal materials class from which to design high‐performance nonlinear optical (NLO) materials. Currently, borate fluorides, chlorides, and bromides are extensively investigated while borate iodide materials discovery remains rare because of the perceived synthetic challenges. We report a new borate iodide, Pb2BO3I, synthesized by a straightforward hydrothermal method. The Pb2BO3I chemical formula conceals that the compound exhibits a structure similar to the well‐established KBe2BO3F2(KBBF), which we show supports the highest second‐harmonic generation (SHG) at 1064 nm in the KBBF family, 10 × KH2PO4(KDP), arising from the inclusion of Pb2+and Iand the crystal chemistry. Our work shows that KBBF‐related compounds can be synthesized incorporating iodide and exhibit superior NLO responses.

     
    more » « less