skip to main content

This content will become publicly available on December 19, 2023

Title: Stabilization of the Polar Structure and Giant Second‐Order Nonlinear Response of Single Crystal γ‐NaAs 0.95 Sb 0.05 Se 2

The dearth of suitable materials significantly restricts the practical development of infrared (IR) laser systems with highly efficient and broadband tuning. Recently, γ‐NaAsSe2is reported, and it exhibits a large nonlinear second‐harmonic generation (SHG) coefficient of 590 pm V−1at 2 µm. However, the crystal growth of γ‐NaAsSe2is challenging because it undergoes a phase transition to centrosymmetric δ‐NaAsSe2. Herein, the stabilization of non‐centrosymmetric γ‐NaAsSe2by doping the As site with Sb, which results in γ‐NaAs0.95Sb0.05Se2is reported. The congruent melting behavior is confirmed by differential thermal analysis with a melting temperature of 450 °C and crystallization temperature of 415 °C. Single crystals with dimensions of 3 mm × 2 mm are successfully obtained via zone refining and the Bridgman method. The purification of the material plays a significant role in crystal growth and results in a bandgap of 1.78 eV and thermal conductivity of 0.79 Wm−1K−1. The single‐crystal SHG coefficient of γ‐NaAs0.95Sb0.05Se2exhibits an enormous value of |d11| = 648 ± 74 pm V−1, which is comparable to that of γ‐NaAsSe2and ≈20× larger than that of AgGaSe2. The bandgap of γ‐NaAs0.95Sb0.05Se2(1.78 eV) is similar to that of AgGaSe2, thus rendering it highly attractive as a high‐performing nonlinear optical material.

 ;  ;  ;  ;  ;  ;  
Award ID(s):
Publication Date:
Journal Name:
Advanced Functional Materials
Wiley Blackwell (John Wiley & Sons)
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Superior infrared nonlinear optical (NLO) crystals are in urgent demand in the development of lasers and optical technologies for communications and computing. The critical challenge is to find a crystal with large non‐resonant phase‐matchable NLO coefficients and high laser damage threshold (LDTs) simultaneously, which however scale inversely. This work reports such a material, MgSiP2,that exhibits a large second harmonic generation (SHG) coefficient ofd14d36= 89 ± 5 pm V−1at 1550 nm fundamental wavelength, surpassing the commercial NLO crystals AgGaS2, AgGaSe2, and ZnGeP2. First principles theory reveals the polarizability and geometric arrangement of the [SiP4] tetrahedral units as the origin of this large nonlinear response. Remarkably, it also exhibits a high LDT value of 684 GW cm−2, which is six times larger than ZnGeP2and three times larger than CdSiP2. It has a wide transparency window of 0.53–10.35 µm, allowing broadband tunability. Further, it is Type I and Type II phase‐matchable with large effective SHG coefficients ofdeff,I≈80.2 pm V−1anddeff,II≈73.4 pm V−1. The outstanding properties of MgSiP2make it a highly attractive candidate for optical frequency conversion in the infrared.

  2. The new, quaternary diamond-like semiconductor (DLS) Cu 4 MnGe 2 S 7 was prepared at high-temperature from a stoichiometric reaction of the elements under vacuum. Single crystal X-ray diffraction data were used to solve and refine the structure in the polar space group Cc. Cu 4 MnGe 2 S 7 features [Ge 2 S 7 ] 6− units and adopts the Cu 5 Si 2 S 7 structure type that can be considered a derivative of the hexagonal diamond structure. The DLS Cu 2 MnGeS 4 with the wurtz-stannite structure was similarly prepared at a lower temperature. The achievement of relatively phase-pure samples, confirmed by X-ray powder diffraction data, was nontrival as differential thermal analysis shows an incongruent melting behaviour for both compounds at relatively high temperature. The dark red Cu 2 MnGeS 4 and Cu 4 MnGe 2 S 7 compounds exhibit direct optical bandgaps of 2.21 and 1.98 eV, respectively. The infrared (IR) spectra indicate potentially wide windows of optical transparency up to 25 μm for both materials. Using the Kurtz–Perry powder method, the second-order nonlinear optical susceptibility, χ (2) , values for Cu 2 MnGeS 4 and Cu 4 MnGe 2 S 7 were estimated to bemore »16.9 ± 2.0 pm V −1 and 2.33 ± 0.86 pm V −1 , respectively, by comparing with an optical-quality standard reference material, AgGaSe 2 (AGSe). Cu 2 MnGeS 4 was found to be phase matchable at λ = 3100 nm, whereas Cu 4 MnGe 2 S 7 was determined to be non-phase matchable at λ = 1600 nm. The weak SHG response of Cu 4 MnGe 2 S 7 precluded phase-matching studies at longer wavelengths. The laser-induced damage threshold (LIDT) for Cu 2 MnGeS 4 was estimated to be ∼0.1 GW cm −2 at λ = 1064 nm (pulse width: τ = 30 ps), while the LIDT for Cu 4 MnGe 2 S 7 could not be ascertained due to its weak response. The significant variance in NLO properties can be reasoned using the results from electronic structure calculations.« less
  3. Abstract

    Next‐generation electronics and energy technologies can now be developed as a result of the design, discovery, and development of novel, environmental friendly lead (Pb)‐free ferroelectric materials with improved characteristics and performance. However, there have only been a few reports of such complex materials’ design with multi‐phase interfacial chemistry, which can facilitate enhanced properties and performance. In this context, herein, novel lead‐free piezoelectric materials (1‐x)Ba0.95Ca0.05Ti0.95Zr0.05O3‐(x)Ba0.95Ca0.05Ti0.95Sn0.05O3, are reported, which are represented as (1‐x)BCZT‐(x)BCST, with demonstrated excellent properties and energy harvesting performance. The (1‐x)BCZT‐(x)BCST materials are synthesized by high‐temperature solid‐state ceramic reaction method by varyingxin the full range (x= 0.00–1.00). In‐depth exploration research is performed on the structural, dielectric, ferroelectric, and electro‐mechanical properties of (1‐x)BCZT‐(x)BCST ceramics. The formation of perovskite structure for all ceramics without the presence of any impurity phases is confirmed by X‐ray diffraction (XRD) analyses, which also reveals that the Ca2+, Zr4+, and Sn4+are well dispersed within the BaTiO3lattice. For all (1‐x)BCZT‐(x)BCST ceramics, thorough investigation of phase formation and phase‐stability using XRD, Rietveld refinement, Raman spectroscopy, high‐resolution transmission electron microscopy (HRTEM), and temperature‐dependent dielectric measurements provide conclusive evidence for the coexistence of orthorhombic + tetragonal (Amm2+P4mm) phases at room temperature. The steady transition ofAmm2crystal symmetry toP4mmcrystal symmetry with increasingxcontentmore »is also demonstrated by Rietveld refinement data and related analyses. The phase transition temperatures, rhombohedral‐orthorhombic (TR‐O), orthorhombic‐ tetragonal (TO‐T), and tetragonal‐cubic (TC), gradually shift toward lower temperature with increasingxcontent. For (1‐x)BCZT‐(x)BCST ceramics, significantly improved dielectric and ferroelectric properties are observed, including relatively high dielectric constantεr≈ 1900–3300 (near room temperature),εr≈ 8800–12 900 (near Curie temperature), dielectric loss, tanδ≈ 0.01–0.02, remanent polarizationPr≈ 9.4–14 µC cm−2, coercive electric fieldEc≈ 2.5–3.6 kV cm−1. Further, high electric field‐induced strainS≈ 0.12–0.175%, piezoelectric charge coefficientd33≈ 296–360 pC N−1, converse piezoelectric coefficient ≈ 240–340 pm V−1, planar electromechanical coupling coefficientkp≈ 0.34–0.45, and electrostrictive coefficient (Q33)avg≈ 0.026–0.038 m4C−2are attained. Output performance with respect to mechanical energy demonstrates that the (0.6)BCZT‐(0.4)BCST composition (x= 0.4) displays better efficiency for generating electrical energy and, thus, the synthesized lead‐free piezoelectric (1‐x)BCZT‐(x)BCST samples are suitable for energy harvesting applications. The results and analyses point to the outcome that the (1‐x)BCZT‐(x)BCST ceramics as a potentially strong contender within the family of Pb‐free piezoelectric materials for future electronics and energy harvesting device technologies.

    « less
  4. Abstract

    Room temperature semiconductor detector (RTSD) materials for γ‐ray and X‐ray radiation are in great demand for the nonproliferation of nuclear materials as well as for biomedical imaging applications. Halide perovskites have attracted great attention as emerging and promising RTSD materials. In this contribution, the material synthesis, purification, crystal growth, crystal structure, photoluminescence properties, ionizing radiation detection performance, and electronic structure of the inorganic halide perovskitoid compound TlPbI3are reported on. This compound crystallizes in the ABX3non‐perovskite crystal structure with a high density ofd = 6.488 g·cm–3, has a wide bandgap of 2.25 eV, and melts congruently at a low temperature of 360 °C without phase transitions, which allows for facile growth of high quality crystals with few thermally‐activated defects. High‐quality TlPbI3single crystals of centimeter‐size are grown using the vertical Bridgman method using purified raw materials. A high electrical resistivity of ≈1012 Ω·cm is readily obtainable, and detectors made of TlPbI3single crystals are highly photoresponsive to Ag KαX‐rays (22.4 keV), and detects 122 keV γ‐rays from57Co radiation source. The electron mobility‐lifetime productµeτewas estimated at 1.8 × 10–5cm2·V–1. A high relative static dielectric constant of 35.0 indicates strong capability in screening carrier scattering and charged defects in TlPbI3.