skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Bioelectrocatalytic Synthesis: Concepts and Applications
Abstract Bioelectrocatalytic synthesis is the conversion of electrical energy into value‐added products using biocatalysts. These methods merge the specificity and selectivity of biocatalysis and energy‐related electrocatalysis to address challenges in the sustainable synthesis of pharmaceuticals, commodity chemicals, fuels, feedstocks and fertilizers. However, the specialized experimental setups and domain knowledge for bioelectrocatalysis pose a significant barrier to adoption. This review introduces key concepts of bioelectrosynthetic systems. We provide a tutorial on the methods of biocatalyst utilization, the setup of bioelectrosynthetic cells, and the analytical methods for assessing bioelectrocatalysts. Key applications of bioelectrosynthesis in ammonia production and small‐molecule synthesis are outlined for both enzymatic and microbial systems. This review serves as a necessary introduction and resource for the non‐specialist interested in bioelectrosynthetic research.  more » « less
Award ID(s):
2002158
PAR ID:
10441917
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie International Edition
Volume:
62
Issue:
46
ISSN:
1433-7851
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Wide‐bandgap semiconductors (WBGS) with energy bandgaps larger than 3.4 eV for GaN and 3.2 eV for SiC have gained attention for their superior electrical and thermal properties, which enable high‐power, high‐frequency, and harsh‐environment devices beyond the capabilities of conventional semiconductors. Pushing the potential of WBGS boundaries, current research is redefining the field by broadening the material landscape and pioneering sophisticated synthesis techniques tailored for state‐of‐the‐art device architectures. Efforts include the growth of freestanding nanomembranes, the leveraging of unique interfaces such as van der Waals (vdW) heterostructure, and the integration of 2D with 3D materials. This review covers recent advances in the synthesis and applications of freestanding WBGS nanomembranes, from 2D to 3D materials. Growth techniques for WBGS, such as liquid metal and epitaxial methods with vdW interfaces, are discussed, and the role of layer lift‐off processes for producing freestanding nanomembranes is investigated. The review further delves into electronic devices, including field‐effect transistors and high‐electron‐mobility transistors, and optoelectronic devices, such as photodetectors and light‐emitting diodes, enabled by freestanding WBGS nanomembranes. Finally, this review explores new avenues for research, highlighting emerging opportunities and addressing key challenges that will shape the future of the field. 
    more » « less
  2. Abstract Attainment of quantum‐confined materials with remarkable stoichiometric, geometric, and structural control has been made possible by advances in colloidal nanoparticle synthesis. The quantum states of these systems can be tailored by selective spatial confinement in one, two, or three dimensions. As a result, a multitude of prospects for controlling nanoscale energy transfer have emerged. An understanding of the electronic relaxation dynamics for quantum states of specific nanostructures is required to develop predictive models for controlling energy on the nanoscale. Variable‐temperature, variable‐magnetic field ( ) optical methods have emerged as powerful tools for characterizing transient excited states. For example, magnetic circular photoluminescence (MCPL) spectroscopy can be used to calculate electronic g factors, assign spectroscopic term symbols for transitions within metal nanoclusters, and quantify the energy gaps separating electronic fine‐structure states. spectroscopic methods are effective for isolating the carrier dynamics of specific quantum fine‐structure states, enabling determination of electronic relaxation mechanisms such as electron‐phonon scattering and energy transfer between assembled nanoclusters. In particular ‐MCPL is especially effective for studying electronic spin‐state dynamics and properties. This Review highlights specific examples that emphasize insights obtainable from these methods and discusses prospects for future research directions. 
    more » « less
  3. Abstract The growing demand for energy in wearable sensors and portable electronics necessitates the development of self‐contained, sustainable, and mobile power sources capable of harvesting environmental energies. Researchers have made significant strides in implementing photovoltaics, thermoelectrics, piezoelectrics, and triboelectrics in 2D materials. This has resulted in significant advancements in wearable energy harvesting systems based on 2D materials. This review discusses the relationship between synthesis procedures, material structures/properties, and device performance in the context of 2D materials‐based wearable energy harvesting technologies. Finally, challenges and future research opportunities are identified and discussed based on current progress. 
    more » « less
  4. Abstract With the increasing use of Li batteries for storage, their safety issues and energy densities are attracting considerable attention. Recently, replacing liquid organic electrolytes with solid‐state electrolytes (SSE) has been hailed as the key to developing safe and high‐energy‐density Li batteries. In particular, Li1+xAlxTi2−x(PO4)3(LATP) has been identified as a very attractive SSE for Li batteries due to its excellent electrochemical stability, low production costs, and good chemical compatibility. However, interfacial reactions with electrodes and poor thermal stability at high temperatures severely restrict the practical use of LATP in solid‐state batteries (SSB). Herein, a systematic review of recent advances in LATP for SSBs is provided. This review starts with a brief introduction to the development history of LATP and then summarizes its structure, ion transport mechanism, and synthesis methods. Challenges (e.g., intrinsic brittleness, interfacial resistance, and compatibility) and corresponding solutions (ionic substitution, additives, protective layers, composite electrolytes, etc.) that are critical for practical applications are then discussed. Last, an outlook on the future research direction of LATP‐based SSB is provided. 
    more » « less
  5. Abstract Two-dimensional (2D) ferroelectric and magnetic van der Waals materials are emerging platforms for the discovery of novel cooperative quantum phenomena and development of energy-efficient logic and memory applications as well as neuromorphic and topological computing. This review presents a comprehensive survey of the rapidly growing 2D ferroic family from the synthesis perspective, including brief introductions to the top-down and bottom-up approaches for fabricating 2D ferroic flakes, thin films, and heterostructures as well as the important characterization techniques for assessing the sample properties. We also discuss the key challenges and future directions in the field, including scalable growth, property control, sample stability, and integration with other functional materials. 
    more » « less