Progress in soft and stretchable electronics depends on energy sources that are mechanically compliant, elastically deformable, and renewable. Energy harvesting using triboelectric nanogenerators (TENGs) made from soft materials provides a promising approach to address this critical need. Here, an elastomeric composite is introduced with sedimented liquid metal (LM) droplets for TENG‐based energy harvesting that relies on assembly of the LM to form phase‐separated conductive and insulating regions. The sedimented LM elastomer TENG (SLM‐TENG) exhibits ultrahigh stretchability (strain limit
The growing demand for energy in wearable sensors and portable electronics necessitates the development of self‐contained, sustainable, and mobile power sources capable of harvesting environmental energies. Researchers have made significant strides in implementing photovoltaics, thermoelectrics, piezoelectrics, and triboelectrics in 2D materials. This has resulted in significant advancements in wearable energy harvesting systems based on 2D materials. This review discusses the relationship between synthesis procedures, material structures/properties, and device performance in the context of 2D materials‐based wearable energy harvesting technologies. Finally, challenges and future research opportunities are identified and discussed based on current progress.
more » « less- Award ID(s):
- 1762698
- PAR ID:
- 10371168
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Materials Technologies
- Volume:
- 7
- Issue:
- 9
- ISSN:
- 2365-709X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract > 500% strain), skin‐like compliance (modulus< 60 kPa), reliable device stability (> 10 000 cycles), and appreciable electrical output performance (max peak power density= 1 mW cm−2). SLM‐TENGs can be integrated with highly elastic stretchable fabrics, thereby enabling broad integration with wearable electronics. A stretchable and wearable SLM‐TENG is demonstrated that harvests energy from human motion through a patch attached to the knee or integrated into exercise clothing. This body‐mounted TENG device can generate enough electricity to fully power a wearable computing device (hygro‐thermometer with digital display) after 2.2 min of running on a treadmill. -
Abstract Vibration‐based energy‐harvesting technology, as an alternative power source, represents one of the most promising solutions to the problem of battery capacity limitations in wearable and implantable electronics, in particular implantable biomedical devices. Four primary energy transduction mechanisms are reviewed, namely piezoelectric, electromagnetic, electrostatic, and triboelectric mechanisms for vibration‐based energy harvesters. Through generic modeling and analyses, it is shown that various approaches can be used to tune the operation bandwidth to collect appreciable power. Recent progress in biomechanical energy harvesters is also shown by utilizing various types of motion from bodies and organs of humans and animals. To conclude, perspectives on next‐generation energy‐harvesting systems are given, whereby the ultimate intelligent, autonomous, and tunable energy harvesters will provide a new energy platform for electronics and wearable and implantable medical devices.
-
Recent advancements in wearable technology have improved lifestyle and medical practices, enabling personalized care ranging from fitness tracking, to real-time health monitoring, to predictive sensing. Wearable devices serve as an interface between humans and technology; however, this integration is far from seamless. These devices face various limitations such as size, biocompatibility, and battery constraints wherein batteries are bulky, are expensive, and require regular replacement. On-body energy harvesting presents a promising alternative to battery power by utilizing the human body’s continuous generation of energy. This review paper begins with an investigation of contemporary energy harvesting methods, with a deep focus on piezoelectricity. We then highlight the materials, configurations, and structures of such methods for self-powered devices. Here, we propose a novel combination of thin-film composites, kirigami patterns, and auxetic structures to lay the groundwork for an integrated piezoelectric system to monitor and sense. This approach has the potential to maximize energy output by amplifying the piezoelectric effect and manipulating the strain distribution. As a departure from bulky, rigid device design, we explore compositions and microfabrication processes for conformable energy harvesters. We conclude by discussing the limitations of these harvesters and future directions that expand upon current applications for wearable technology. Further exploration of materials, configurations, and structures introduce interdisciplinary applications for such integrated systems. Considering these factors can revolutionize the production and consumption of energy as wearable technology becomes increasingly prevalent in everyday life.more » « less
-
Abstract Cellulose is the most abundant natural polymer on earth, providing a sustainable green resource that is renewable, degradable, biocompatible, and cost effective. Recently, nanocellulose‐based mesoporous structures, flexible thin films, fibers, and networks are increasingly developed and used in photovoltaic devices, energy storage systems, mechanical energy harvesters, and catalysts components, showing tremendous materials science value and application potential in many energy‐related fields. In this Review, the most recent advancements of processing, integration, and application of cellulose nanomaterials in the areas of solar energy harvesting, energy storage, and mechanical energy harvesting are reviewed. For solar energy harvesting, promising applications of cellulose‐based nanostructures for both solar cells and photoelectrochemical electrodes development are reviewed, and their morphology‐related merits are discussed. For energy storage, the discussion is primarily focused on the applications of cellulose‐based nanomaterials in lithium‐ion batteries, including electrodes (e.g., active materials, binders, and structural support), electrolytes, and separators. Applications of cellulose nanomaterials in supercapacitors are also reviewed briefly. For mechanical energy harvesting, the most recent technology evolution in cellulose‐based triboelectric nanogenerators is reviewed, from fundamental property tuning to practical implementations. At last, the future research potential and opportunities of cellulose nanomaterials as a new energy material are discussed.
-
null (Ed.)Motion energy harvesting is an ideal alternative to battery in wearable applications since it can produce energy on demand. So far, widespread use of this technology has been hindered by bulky, inflexible and impractical designs. New flexible piezoelectric materials enable comfortable use of this technology. However, the energy harvesting potential of this approach has not been thoroughly investigated to date. This paper presents a novel mathematical model for estimating the energy that can be harvested from joint movements on the human body. The proposed model is validated using two different piezoelectric materials attached on a 3D model of the human knee. To the best of our knowledge, this is the first study that combines analytical modeling and experimental validation for joint movements. Thorough experimental evaluations show that 1) users can generate on average 13 μW power while walking, 2) we can predict the generated power with 4.8% modeling error.more » « less