skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Controlling Single‐Photon Emission with Ultrathin Transdimensional Plasmonic Films
Abstract The properties of a two‐level quantum dipole emitter near an ultrathin transdimensional plasmonic film are studied theoretically. The model system studied mimics a solid‐state single‐photon source device. Using realistic experimental parameters, the spontaneous and stimulated emission intensity profiles are computed as functions of the excitation frequency and film thickness, followed by the analysis of the second‐order photon correlations to explore the photon antibunching effect. It is shown that ultrathin transdimensional plasmonic films can greatly improve photon antibunching with thickness reduction, which allows one to control the quantum properties of light and make them more pronounced. Knowledge of these features is advantageous for solid‐state single‐photon source device engineering and overall for the development of the new integrated quantum photonics material platform based on the transdimensional plasmonic films.  more » « less
Award ID(s):
1830874
PAR ID:
10441989
Author(s) / Creator(s):
 
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Annalen der Physik
Volume:
535
Issue:
8
ISSN:
0003-3804
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract A confinement‐induced nonlocal electromagnetic response model is applied to study radiative heat transfer processes in transdimensional plasmonic film systems. The results are compared to the standard local Drude model routinely used in plasmonics. The former predicts greater Woltersdorff length in the far‐field and larger film thicknesses at which heat transfer is dominated by surface plasmons in the near‐field, than the latter. The analysis performed suggests that the theoretical treatment and experimental data interpretation for thin and ultrathin metallic film systems must incorporate the confinement‐induced nonlocal effect in order to provide reliable results in radiative heat transfer studies. The fact that the enhanced far‐ and near‐field radiative heat transfer occurs for much thicker films than the standard Drude model predicts is crucial for thermal management applications with thin and ultrathin metallic films and coatings. 
    more » « less
  2. Abstract Charge collection is critical in any photodetector or photovoltaic device. Novel materials such as quantum dots (QDs) have extraordinary light absorption properties, but their poor mobility and short diffusion length limit efficient charge collection using conventional top/bottom contacts. In this work, a novel architecture based on multiple intercalated chemical vapor deposition graphene monolayers distributed in an orderly manner inside a QD film is studied. The intercalated graphene layers ensure that at any point in the absorbing material, photocarriers will be efficiently collected and transported. The devices with intercalated graphene layers have superior quantum efficiency over single‐bottom graphene/QD devices, overcoming the known restriction that the diffusion length imposes on film thickness. QD film with increased thickness shows efficient charge collection over the entire λ ≈ 500–1000 nm spectrum. This architecture could be applied to boost the performance of other low‐cost materials with poor mobility, allowing efficient collection for films thicker than their diffusion length. 
    more » « less
  3. Abstract Using electrodynamical description of the average power absorbed by a conducting film, we present an expression for the electric-field intensity enhancement (FIE) due to epsilon-near-zero (ENZ) polariton modes. We show that FIE reaches a limit in ultrathin ENZ films inverse of second power of ENZ losses. This is illustrated in an exemplary series of aluminum-doped zinc oxide nanolayers grown by atomic layer deposition. Only in a case of unrealistic lossless ENZ films, FIE follows the inverse second power of film thickness predicted by S. Campione, et al. [ Phys. Rev. B , vol. 91, no. 12, art. 121408, 2015]. We also predict that FIE could reach values of 100,000 in ultrathin polar semiconductor films. This work is important for establishing the limits of plasmonic field enhancement and the development of near zero refractive index photonics, nonlinear optics, thermal, and quantum optics in the ENZ regime. 
    more » « less
  4. We show that the optical response of ultrathin metallic films of finite lateral size and thickness can feature peculiar magneto-optical effects resulting from the spatial confinement of the electron motion. In particular, the frequency dependence of the magnetic permeability of the film exhibits a sharp resonance structure shifting to the red as the film aspect ratio increases. The films can also be negatively refractive in the IR frequency range under proper tuning. We show that these magneto-optical properties can be controlled by adjusting the film chemical composition, plasmonic material quality, the aspect ratio, and the surroundings of the film. 
    more » « less
  5. Abstract Efficient and compact single photon emission platforms operating at room temperature with ultrafast speed and high brightness will be fundamental components of the emerging quantum communications and computing fields. However, so far, it is very challenging to design practical deterministic single photon emitters based on nanoscale solid‐state materials that meet the fast emission rate and strong brightness demands. Here, a solution is provided to this longstanding problem by using metallic nanocavities integrated with hexagonal boron nitride (hBN) flakes with defects acting as nanoscale single photon emitters (SPEs) at room temperature. The presented hybrid nanophotonic structure creates a rapid speedup and large enhancement in single photon emission at room temperature. Hence, the nonclassical light emission performance is substantially improved compared to plain hBN flakes and hBN on gold‐layered structures without nanocavity. Extensive theoretical calculations are also performed to accurately model the new hybrid nanophotonic system and prove that the incorporation of plasmonic nanocavity is key to efficient SPE performance. The proposed quantum nanocavity single photon source is expected to be an element of paramount importance to the envisioned room‐temperature integrated quantum photonic networks. 
    more » « less