Mechanochemistry afforded a photoactive cocrystal via coexisting (B)O−H⋅⋅⋅N hydrogen bonds and B←N coordination. Specifically, solvent‐free mechanochemical ball mill grinding and liquid‐assisted grinding of a boronic acid and an alkene resulted in mixtures of hydrogen‐bonded and coordinated complexes akin to mixtures of noncovalent complexes that can be obtained in solution in equilibria processes. The alkenes of the hydrogen‐bonded assembly undergo an intermolecular [2+2] photodimerization in quantitative conversion, effectively reporting the outcome of the self‐assembly processes. Our results suggest that interplay involving noncovalent bonds subjected to mechanochemical conditions can lead to functional solids where, in the current case, the structure composed of the weaker hydrogen bonding interactions predominates.
Mechanochemistry afforded a photoactive cocrystal via coexisting (B)O−H⋅⋅⋅N hydrogen bonds and B←N coordination. Specifically, solvent‐free mechanochemical ball mill grinding and liquid‐assisted grinding of a boronic acid and an alkene resulted in mixtures of hydrogen‐bonded and coordinated complexes akin to mixtures of noncovalent complexes that can be obtained in solution in equilibria processes. The alkenes of the hydrogen‐bonded assembly undergo an intermolecular [2+2] photodimerization in quantitative conversion, effectively reporting the outcome of the self‐assembly processes. Our results suggest that interplay involving noncovalent bonds subjected to mechanochemical conditions can lead to functional solids where, in the current case, the structure composed of the weaker hydrogen bonding interactions predominates.
more » « less- Award ID(s):
- 2221086
- PAR ID:
- 10442029
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Angewandte Chemie International Edition
- Volume:
- 62
- Issue:
- 35
- ISSN:
- 1433-7851
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Halogen bonds have emerged as noncovalent forces that govern the assembly of molecules in organic solids with a degree of reliability akin to hydrogen bonds. Although the structure-directing roles of halogen bonds are often compared to hydrogen bonds, general knowledge concerning the fundamental structural behavior of halogen bonds has had limited opportunity to develop. Following an investigation of solid-state reactions involving organic syntheses and the development of photoresponsive materials, this work demonstrates the ability of the components of intermolecular N...I halogen bonding – a `workhorse' interaction for the crystal engineer – to support a single-crystal-to-single-crystal [2+2] photodimerization. A comparison is provided of the geometric changes experienced by the halogen-bonded components in the single-crystal reaction to the current crystal landscape of N...I halogen bonds, as derived from the Cambridge Structural Database. Specifically, a linear-to-bent type of deformation of the halogen-bonded components was observed, which is expected to support the development of functional halogen-bonded materials containing molecules that can undergo movements in close-packed crystal environments.more » « less
-
Abstract The lone pair of the N atom is a common electron donor in noncovalent bonds. Quantum calculations examine how various aspects of the base on which the N is located affect the strength and other properties of complexes formed with Lewis acids FH, FBr, F2Se, and F3As that respectively encompass hydrogen, halogen, chalcogen, and pnicogen bonds. In most cases the halogen bond is the strongest, followed in order by chalcogen, hydrogen, and pnicogen. The noncovalent bond strength increases in the sp
2 3order of hybridization of N. Replacement of H substituents on the base by a methyl group or substituting N by C atom to which the base N is attached, strengthens the bond. The strongest bonds occur for trimethylamine and the weakest for N2. -
Abstract The ability of B atoms on two different molecules to engage with one another in a noncovalent diboron bond is studied by ab initio calculations. Due to electron donation from its substituents, the trivalent B atom of BYZ2(Z=CO, N2, and CNH; Y=H and F) has the ability to in turn donate charge to the B of a BX3molecule (X=H, F, and CH3), thus forming a B⋅⋅⋅B diboron bond. These bonds are of two different strengths and character. BH(CO)2and BH(CNH)2, and their fluorosubstituted analogues BF(CO)2and BF(CNH)2, engage in a typical noncovalent bond with B(CH3)3and BF3, with interaction energies in the 3–8 kcal/mol range. Certain other combinations result in a much stronger diboron bond, in the 26–44 kcal/mol range, and with a high degree of covalent character. Bonds of this type occur when BH3is added to BH(CO)2, BH(CNH)2, BH(N2)2, and BF(CO)2, or in the complexes of BH(N2)2with B(CH3)3and BF3. The weaker noncovalent bonds are held together by roughly equal electrostatic and dispersion components, complemented by smaller polarization energy, while polarization is primarily responsible for the stronger ones.
-
null (Ed.)We describe the integration of a small-molecule hydrogen-bond-donor template into a cascade reaction that is comprised of a combination of molecular and supramolecular events. The cascade is performed mechanochemically and in the presence of μL amounts of water. The small-molecule template is generated (molecular) using water-assisted vortex grinding and is then used to assemble an alkene (supramolecular) to undergo an intermolecular [2 + 2] photodimerization reaction (molecular). The chemical cascade results in a cyclobutane photoproduct that we show serves as a building block of a hydrogen-bonded network with a topology that conforms to T-silica. Remarkably, the molecular–supramolecular–molecular chemical cascade occurs stepwise and entirely regioselectively within the continuous mechanochemical conditions employed.more » « less